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delays across unrelated projects. This is because participants opportunistically reallocate resources into dis-
rupted projects, at the expense of other projects, triggering a domino effect of further reallocations in the
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tractors for timeliness, exacerbate these externalities by encouraging self-interested resource reallocation.
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1. Introduction
A project involves several participants—including contractors, clients, and subcontractors—all of
whom manage multiple projects concurrently and allocate scarce resources (such as workers and
machinery) among them. This resource interdependence creates an interconnected network of other-
wise unrelated projects.

We demonstrate that, due to this interdependency, the adverse effects of a seemingly isolated
disruption (e.g., a weather disruption at a construction site) propagate across the network and,
eventually, delay projects and affect participants that had nothing to do with the original disruption.
Specifically, when a disruption causes a project to fall behind schedule, participants respond by
reallocating resources to speed up the disrupted project at the expense of other projects in the
network. This self-interested reallocation may benefit the affected project, but it leaves other projects
with less slack time and puts them at risk of future delays by reducing their margins of error.

Moreover, this initial reallocation of resources triggers a domino effect, leading to further real-
location decisions by other participants in the network. Thus, the effects of a seemingly isolated
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disruption to a single project end up being parceled out across other projects in the network, instead
of being fully absorbed by the disrupted project. The project network, in this sense, inadvertently
acts as an insurance net for the initially disrupted project. In doing so, however, progress on other
projects is hampered as a result of resource-reallocation externalities.

Figure 1 A network with three highway construction projects (involving two asphalting firms and two
excavation companies).

Note. In this network, there are three concurrent highway projects: one taking place in Boston (executed by Excavation A and
Asphalt A); one in New York City (executed by Asphalt A and Excavation B); and one in Philadelphia (executed by Excavation
B and Asphalt B).

We illustrate this idea using a hypothetical project network from Figure 1, which consists of three
highway construction projects in Boston, New York City, and Philadelphia. Each project is managed
by an excavation company (Excavation A or Excavation B) and an asphalting company (Asphalt A
or Asphalt B). Initially, all projects expect to finish ahead of time. But suppose a flood at Boston’s
project site puts it behind schedule. Asphalt A responds by reallocating machinery and workers, from
NYC to Boston, to speed up the Boston project. Now, both the Boston and NYC projects are on
track to finish just in time, but without any slack. This reallocation is optimal for Asphalt A, since
bringing resources from NYC helps the Boston project avoid a delay. But now, any future disruption
at NYC could trigger a delay there (and affect Excavation B for no fault of its own). Furthermore, if
such a disruption were to occur, Excavation B may need to reallocate resources from Philadelphia to
NYC. Thus, a disruption originating in Boston may trigger a delay in NYC’s project and eventually
even ripple to Philadelphia, thus impacting participants unrelated to the initial disruption due to
decisions made elsewhere in the network.

The main challenge in empirically substantiating this argument is to build a project network and to
document how disruptions ripple across it. Doing so requires a centralized source of data on projects,
the participants involved in each task, and the disruptions affecting project operations. We overcome
this challenge by mapping the network of public projects awarded by the U.S. federal government. We
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obtain data on 2.4 million projects awarded between 2011 and 2015, involving 124,026 contractors,
27,660 subcontractors, 3,559 awarding offices, and 1,188 types of tasks. The projects span tasks
ranging from the construction of a hospital to the installation of streetlights. The data also includes
time-stamped records of every modification made to a project, allowing us to create a timeline for
each project and track its progress towards completion.

To measure the propagation of localized disruptions in the network, and distinguish such shocks
from potential confounders, we focus on disruptions caused by localized weather events.1 For instance,
a thunderstorm may flood a construction site or cause electric outages that affect project operations.
To this end, we leverage severe weather events affecting a project site using data from the National
Oceanic and Atmospheric Administration (NOAA). We then assess the impact of such disruptions
on other projects that are linked through the network but are not directly affected by the disruption.

Our identification approach involves grouping the projects into partitions. Each partition contains
projects that perform the same task, in nearby regions, and under similar contractual arrangements.
Although projects in a partition share many similarities, they differ in three key ways: (i) they are
connected to different projects in the network, (ii) only some projects in a partition experienced a
localized disruption and (iii) the ones that did experience a disruption did so at different times.

For example, a partition may include five windmill installation projects (p1,p2,p3,p4,p5) conducted
in Texas in 2011 by similar contractors (who are each linked to different participants in the project
network). But only two of these projects experienced a localized disruption, namely p1 and p2, with
the disruptions occurring in March 2011 and July 2012, respectively. These key differences enable us
to use an identification strategy that exploits two sources of variation within a partition: variation in
the cross-section (i.e., only a subset of projects experienced a disruption) and variation in the time
series (i.e., the timing of the disruptions varied). If disruptions indeed propagate across the network,
we would then expect that the projects linked to p1and p2 are more susceptible to delays than those
linked to p3, p4, and p5—but also that this increased likelihood coincides with the timing of the
disruptions. Thus, projects connected to p1 should be more vulnerable to delays only after March
2011, while those connected to p2 should be more vulnerable to delays only after July 2012.

We applied this insight using a multi-period difference-in-differences estimator with recurrent and
temporary treatment spells, and implementing this design with thousands of partitions in our project
network. This analysis provides systematic evidence that disruptions propagate through the network.
Specifically, we demonstrate that being connected to a disrupted project increases the likelihood
of being delayed by up to 17% in the quarter-year following the disruption, relative to the within-
partition control projects. In terms of delay time, being connected to a disrupted project increases

1 In Appendix C, we also consider reallocation externalities due to other types of disruptions.
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the expected completion time by up to 6 days per quarter, relative to the within-partition controls.
The analysis also shows that the disruptions propagate, albeit on a smaller scale, to the second tier.

We also analyzed directly-disrupted projects and found that projects with fewer network connec-
tions were much more likely to experience delays, presumably due to their limited access to resources
from the network. Furthermore, network-connected projects suffered almost as much as directly
impacted projects, indicating that the costs of disruptions are passed on to other projects in the
network, instead of being entirely absorbed by the impacted project.

But are resource reallocation decisions really driving the results? After all, we do not observe
which resources are being used by project participants, nor how they are being allocated. With this
caveat in mind, we provide evidence pointing to a resource reallocation, by showing that disruptions
propagate mainly when participants find it feasible to reallocate and when they have incentives to
do so. Specifically, we show that connected projects are more likely to be delayed when they are
geographically closer to the disrupted project and perform the same task. The connected projects
also experience greater delays when the disrupted project receives performance incentives (for timely
completion) or when the disrupted project has a substantially higher budget. Further, we show that
machinery and equipment is more prone to reallocation (following a disruption) as opposed to labor.

Taken together, our results suggest that project delays are driven (at least in part) by a reallocation
of resources due to disruptions in the project network. We demonstrate that this spillover effect of
resource reallocation externalities is economically significant – our analysis (in Appendix B) provides
some conservative estimates of the cost of these delay spillovers. Our work sheds new light on what
causes project delays, and what can be done to mitigate their impact.

2. Theoretical Foundations
2.1. What drives project delays?

According to recent studies, 92% of infrastructure projects are completed behind schedule or are
over-budget (Vartabedian 2021). A natural question is, “What causes delays in so many projects?”
Much of the work on this point has focused on establishing systematic behaviors that explain why
delays have become endemic in project management. Researchers offer four broad reasons:
1. Poor planning. Lovallo and Kahneman (2003), Grushka-Cockayne (2020), and Baucells et al.
(2024) suggest that delays are driven by planning fallacies and cognitive biases, which leads project
participants to be overly optimistic (or pessimistic) and, in turn, to make unrealistic projections.2

Staats et al. (2012) offer a similar explanation showing that, when the project is large, decision
makers underestimate the time required to coordinate a big team. In contrast, Flyvbjerg (2009)

2 In a related case study, Grushka-Cockayne (2014) demonstrates the existence of planning fallacy using data on
construction projects of the New York City Department of Parks and Recreation.
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argues that delays are caused due to “strategic misrepresentation” by contractors who purposely set

short timelines to secure a contract.

2. Poor hiring. Other researchers have shown that projects can suffer when managers do not put in

the effort to assemble competent teams. For instance, Coviello and Mariniello (2014) used Italian

procurement data to show that delays are more likely when governments fail to publicize project

solicitations and, accordingly, to attract capable contractors. And Bordat et al. (2004) found that

projects experience delays when they do not foster competition in procurement auctions.

3. Poor contracting. Researchers have also linked delays to how contractors and clients set up con-

tractual incentives. For instance, Bajari and Tadelis (2001) find that pegging the risk of delays on the

contractor is most effective when the contractor is assigned a complex task, and vice versa. Gopal and

Sivaramakrishnan (2008), in addition, use data from offshore software development projects to show

that project outcomes improve when contractual incentives are carefully designed. Finally, Warren

(2014) show that a surge in contracting officers’ workload influences the selection criteria and the

contractual parameters on government projects.

4. Poor oversight. Studies also examine how the level of supervision, from the client to the contractor,

affects project outcomes. For instance, Calvo et al. (2019) show that government oversight hamstrings

operational efficiency, especially when contractors are new to public procurement and Coviello et al.

(2018) show that red tape in procurement increases expected delays, while Roy et al. (2022) show

that projects experience more baseline changes when there is insufficient oversight capacity.

In all cases above, researchers attribute delays to factors that operate within project boundaries.

This means that project participants have, at least in theory, some degree of control over delays.

From this perspective, it is reasonable to penalize or reward participants for completing a project

on time. However, in this paper, we show that project outcomes are influenced by decisions made

elsewhere in the network. We contribute to the literature by identifying a new factor that influences

project delays: one that intertwines the decisions of multiple actors in a so-called “project network.”

2.2. What is a project network?

A “project” is defined as a one-time process with a clear output and a fixed deadline. This out-

put is achieved when multiple participants contribute resources that are unique and, often, non-

substitutable (e.g., workers, machinery, engineers, and inspectors).

To visualize a project network, assume that only two types of participants are involved:contractors

and agencies. Consider a set of M contractors, C = {c1, ..., cM}, and a set of N agencies, A =

{a1, ...,aN}, which pair up to deploy multiple projects. Because agencies and contractors only pair
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Figure 2 Representation of a project network

Note. This network has seven projects represented by the edges {p11, p12, p22, p23, p33, p31, p44}. Projects in this network
involve four contractors and four agencies, i.e., C = {c1, c2, c3, c4} and A = {a1, a2, a3, a4}. The network has two connected
components {p11, p12, p22, p23, p33, p31} and {p44}. Panel (a) presents the graph of the network, Panel (b) presents the line graph
representation, and Panel (c) presents the geographic location of these projects. Matrix L(P) denotes the incidence matrix of
the line graph corresponding to Network P.

with each other and not among themselves, a project network is bipartite.3 If we let pij represent a
project performed by contractor ci ∈ C and agency aj ∈ A, then

P =

 p11 · · · p1N
...

. . .
...

pM1 · · · pMN


is the M ×N relationship matrix with element pij = 1 if contractor ci and agency aj are involved
in a project, and is zero otherwise.4 Figure 2 illustrates a sample network with four contractors and
four agencies working simultaneously on seven projects (in different locations, as indicated on the
map).
Distance between projects. We can represent P via a line graph, which maps the adjacency
between the edges of P. We let L(P) denote the adjacency matrix of the line graph (see panel (b) in
Figure 2). L(P) is a square matrix of dimension k, with k being the number of projects. We can use
the line graph to determine the degree of separation between two projects. To this end, we present
the following definition.

Definition 1. ψd(pij) is the set containing all projects with d degrees of separation from pij .
Applying Definition 1 to the network in Figure 2, we can verify that ψ1(p11) = {p12,p31}, i.e., p12

and p31 have one degree of separation from p11. Similarly, we can verify that ψ2(p12) = {p23,p31},
i.e., p23 and p31 have two degrees of separation from p12.

3 In reality, a project could involve multiple types of participants (which could make the network tripartite or multi-
partite). However, the same concepts highlighted here would apply.
4 In reality, an agency and a contractor can work on multiple projects at the same time. For notational simplicity, we
consider elements of P to be binary, i.e., they represent a single project.



7

2.3. Disruptions in the project network

The paper presents two arguments and two corresponding hypotheses, which we intend to test empir-

ically. Our first argument is that when a project p experiences a disruption, its impact will propagate

across projects that were connected to p but not directly affected by the disruption. To this end, we

will empirically examine the following proposition:

Baseline proposition (disruption spillovers). A “localized” disruption in one project will ripple

across the same connected component in the project network, by increasing the delay likelihood and

the expected future delays of network-connected projects.

This proposition argues that the costs of a localized disruption end up being borne by other

participants in the project network rather than being fully absorbed by the directly disrupted project.

To illustrate, consider the network from Figure 2. Suppose that projects p22 and p44, which are

both located in San Diego, CA, as shown in the figure, are identical in all observable respects: they

execute the same task, are in nearby locations, have a similar timeline, and operate under the same

contractual guidelines. However, p22 and p44 are in different connected components in the network.

Our baseline proposition argues that if a localized disruption hits p12, then p22 is more likely to

suffer a future delay than p44. In other words, we will show that the sole fact that p22 was connected

to p12—whereas p44 was not—made it more likely to report a future delay. We also intend to show

that these shocks can propagate further in the network, and affect projects that are more than one

tier away from the disruption (for instance, p23 or p33).

But what is driving such spillovers? We have the following proposition.

Mechanism proposition (resource reallocation). The observed disruptions spillovers are

driven, at least in part, by a reallocation of resources by the project participants.

Note that a reallocation will only be necessary if the disruption is significant enough to push the

project behind schedule. And if the project does fall behind schedule, participants would typically

draw resources from projects with enough slack time, so that both projects remain on schedule after

the reallocation. This means that a reallocation of resources by itself is not expected a priori to

create a delay in any project. It does, however, make other projects more vulnerable to future delays

by reducing their margins of error. For example, if a disruption in p12 (from Figure 2) prompts the

participants to reallocate resources from p11 and p22, then these two projects would be left with

a smaller buffer and, accordingly, be more susceptible to delays. As discussed in Section 1, this

reallocation may trigger a domino effect of further re-allocations in the network, and delay projects

that are several degrees of separation away from the disrupted project.
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3. Empirical framework
We test our hypotheses by mapping the network of U.S. federal projects. We first describe the role
of contractors and agencies in allocating resources to keep these projects on track.5

3.1. Role of Agencies

An agency is a government organization that is responsible for overseeing the day-to-day operations
of a project. Each agency has a number of “awarding offices” that carry out its responsibilities. These
offices verify that the contractor complies with all quality and regulatory guidelines.
What resources do agencies manage? A key responsibility of the agencies is to manage and
allocate government-furnished property (GFP) – these are resources supplied by the government for
a contractor to utilize in performing project tasks. Government-furnished property can encompass
equipment, tools, materials, vehicles, and facilities. Agency officers can request for equipment to
be transferred from storage centers, or from other projects, to any given location for the use of
a particular task. Since agency officers are tasked with managing GFP resources across projects,
they need to determine when specific equipment is available to the contractor and whether it is
concurrently used by other projects. If an agency officer finds it advantageous (or necessary) to
reallocate GFP from one project to another, a formal procedure exists for transferring such equipment
(see FAR §52.245-1). GFP transfers are quite common—in fact, our data show several records where
GFP transfers were made to speed up a project.
How are agencies held accountable for delays? Agency officers get evaluated based on their
performance through internal assessments. The Federal Acquisition Regulation outlines the author-
ity and responsibilities of agency officers overseeing contracts—including how they are selected,
appointed and can be terminated for unsatisfactory performance.6 Falling behind schedule in a project
handicaps agency officers if they wish to advance in their careers. According to a recent report, more
than 80% of the officers reported that project outcomes such as timeliness, quality, and cost were
factored into their performance ratings (McPhie et al. 2005).

Furthermore, when projects are delayed, the inspector-general may conduct a thorough investiga-
tion of the concerned agency and identify the personnel responsible for mismanagement. Punitive
actions are then taken against these individuals along with agency-wide recommendations to improve
operations—see, for example, Office of Inspector General (2018) and Hull (2019). Finally, the gov-
ernment also compensates the contractor by making equitable adjustments for the costs incurred due
to agency-caused delays (see FAR §552.243-71)—we observe several text descriptions in our dataset
evidencing this compensation.

5 For details about project regulations, see the Federal Acquisition Regulation (FAR) book, which is available at
https://www.acquisition.gov/sites/default/files/current/far/pdf/FAR.pdf.
6 See https://www.acquisition.gov/far/subpart-1.6

https://www.acquisition.gov/far/subpart-1.6
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3.2. Role of Contractors

A contractor is a firm hired by the government to carry out project tasks. Contractors also own
and operate property (referred to as “contractor-acquired property” in FAR §52.245-1); and provide
resources such as machinery, tools, equipment, skilled labor, and input materials for the project.
How are contractors held accountable for delays? There are two ways in which the government
aligns the contractors incentives with its own.
1. Career concerns (Contractor Performance Assessment Reporting System). First, the government
can impede contractors’ ability to bid on future projects if their past performance is not up to
the mark. The federal government uses a tier system to rank each contractor’s performance in the
Contractor Performance Assessment Reporting System (CPARS). This system ranks contractors
on various dimensions (one of them being their timeliness or “schedule”), via a five-tier ranking:
Exceptional, Very Good, Satisfactory, Marginal, and Unsatisfactory.
2. Financial penalties (Performance-based incentives). Second, the government can use financial
incentives to influence the contractors’ decisions. About 41% of the government contracts include
performance-based incentives, which levy fines on (or withhold bonuses from) the contractors when
a project is delivered late. When a contract includes a delay-based penalty, this penalty is specified
through a liquidated damages clause. Performance-based contracts focus entirely on project out-
comes rather than the processes followed to achieve them. In these projects, the contractor typically
receives a larger fixed-fee payment but is subject to penalties if the pre-established outcome is not
achieved—for instance, if the deadline is not met (see FAR §37.6 for details). This type of contracting
aims to reduce oversight and surveillance, allowing the agency to take on a less active role. Without
performance-based acquisition, the agency has a more active role in ensuring the contractor finishes
on time. In such cases, the agency shares some of the burden for delays, as it is responsible for
dictating how the work should be done or developing plans to expedite a delayed project.

3.3. Can delays be excusable?

Since we focus on delays that are caused by exogenous disruptions (such as weather) in the network,
one may argue that project participants are not responsible for such delays. In 2010, however, the U.S.
Federal Court ruled (in Edge Construction Co. v. United States, 95 Fed. Cl. 407, 420) that project
participants are contractually liable for all delays, regardless of the root cause, with the exception
of delays resulting from government negligence. The Federal Court of Appeals later confirmed that
contractual penalties (or rewards) cannot be adjusted due to severe weather. This ruling aimed to
address opportunistic behavior from contractors who often exploited weather-related events to justify
operational inefficiency and evade penalties (see Appeal of Charles G. Williams Const., Inc., No.
42592, 92-1). Therefore, all project participants have an incentive to avoid being late, even when the
delay is due to factors beyond their control.
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3.4. Data sources

We obtain data on project and modification records from USAspending.gov; and data on weather
records from the National Oceanic and Atmospheric Administration (NOAA).
Project and Modification records. We obtained 2.4 million project records from the USAspending
database, including every infrastructure project with a budget surpassing $10,000. There are 261
variables in each project record. We use the variables describing the characteristics of a project’s (1)
task, (2) contractual terms, (3) contractor, and (4) agency office.
1. Task characteristics. We retrieve data on each project’s start date, the expected completion date,
and the address where it was carried out. We also observe a variable describing and categorizing the
nature of the task. There are over 1,000 task categories, represented via a four-digit code. The first
digit provides a broad categorization of the task (e.g., Y = Construction of Structures/Facilities),
whereas the latter three digits provide a more granular description about each task (e.g., Y1BD =

Construction of airport runways and taxiways).
2. Contract characteristics. We observe several variables on the contractual terms of a project, includ-
ing the initial budget, payment scheme (e.g., fixed price, time and materials, or cost-plus pricing), and
details on the acquisition scheme (performance-based or non-performance-based). We also observe
whether the project was competitively awarded and the number of bids made in the solicitation stage
and all regulatory bylaws affecting a particular project.
3. Agency characteristics. We observe details of the agency offices responsible for overseeing each
project, as well as the government agency and sub-agency that it represents (e.g., Air Force is a
sub-agency of the Department of Defense).
4. Contractor characteristics.We observe the contractor’s name, DUNS identification number, head-
quarters location, annual revenue, number of employees, and industry (NAICS) code for the project
in which the contractor is involved.

We winsorize the numerical variables to reduce the influence of reporting errors or outliers in the
data. Table 1 illustrates a project record drawn from the database. Table D. 3, in the appendix,
provides descriptive statistics about the project records in our sample.

Any disruption or event affecting a project’s operations must be logged as a “modification record.”
We observe around five million time-stamped modification records detailing such changes (e.g., see
Table 2). These records have an identification number, a text description, and a category code
describing the nature of the modification. Moreover, we observe if the completion date of the project
was changed as a result of the event, for instance, if there was a delay caused by a disruption. Note
that modifications are reported even if there is no change to a project’s deadline. Several modifications
are purely administrative in nature and lead to no change on project outcomes.
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Table 1 Sample project record
RECORD OF PROJECT

PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER FA446011C0005

TASK CHARACTERISTICS
Description HOSPITAL RENOVATION AND MRI ADDITION, MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA

Task category Y: Construction of structures/Facilities
Task code Y141: Construct/Hospitals & Infirmaries

Start date 09/27/2012
Expected completion date 10/29/2015

Actual completion date 10/29/2015
Place of performance CAMP LEJEUNE, NC 28542-0089 Congressional District: NC-03 UNITED STATES

CONTRACT CHARACTERISTICS
Initial Contract value $62,159,163

Type of Contract Pricing J: Firm Fixed Price
Performance-Based Acquisition No

Solicitation procedure A: Full and open competition
Solicitation procedure NP: Negotiated Proposal/Quote

Davis Bacon Act X: Not Applicable
Clinger Cohen Act X: Not Applicable

CONTRACTOR CHARACTERISTICS
Name W.M.JORDAN COMPANY, INCORPORATED
DUNS 005810890

Address (Branch) 11010 JEFFERSON AVE NEWPORT NEWS, VA 23601-2717
Parent company W.M.JORDAN COMPANY, INCORPORATED

Parent DUNS 005810890
Annual revenue $170.25 million

Employees 340
AGENCY CHARACTERISTICS

Agency: Office NAVAL FAC ENGINEERING CMD MID LANT
Office address 1322 Patterson Ave. SE, Suite 1000, D.C. 20374-5065

Agency: Sub-department Department of the Navy
Agency: Department Department of Defense

Note. The complete record (that includes over 260 fields) can be retrieved from USAspending.gov.

Table 2 Sample modification record
MODIFICATION RECORD

PROJECT INSTRUMENT ID: FA466114P0083

MODIFICATION NO.: P00001 EFFECTIVE DATE: 09/05/2014
Major (Parent) Agency 9700: DEPT OF DEFENSE

Contracting Office Agency ID 5700: DEPT OF THE AIR FORCE
CONTRACTOR INFORMATION

GENECO TECHNOLOGIES, LLC
649 SCOTT ST, 79563-2225 TYE, TEXAS

DESCRIPTION OF MODIFICATION
Completion date change (calendar days) 14

Total cost price change $0
TYPE OF MODIFICATION

Reason for Modification M: OTHER ADMINISTRATIVE ACTION
EXTEND PERIOD OF PERFORMANCE BY 14 DAYS FROM 8 SEPTEMBER 14 TO 22 SEPTEMBER 14 DUE TO DAMAGES IN THE VENTILATION SYSTEM

Note. This table represents an example of a modification record, where the project’s scheduled end date
was extended by 14 days.

Weather records. To obtain causal estimates, our identification strategy will rely on disruptions
caused by localized weather events. To this end, we use the Storm Events Database, available through
NOAA, which includes records on over 50 types of weather events. Each record includes the date when
the weather event occurred, the counties affected by it, and the dollar value of damaged property
and crops. Table 3 provides a sample record drawn from this database, In Appendix D, Table D. 4
shows descriptive statistics about all weather events, and Figure D.2 maps these weather events by
county and event type.

We note that every weather disruption that occurs at a project’s site is recorded in the data,
irrespective of whether the disruption causes a delay on the project or not.



12

Table 3 Sample weather record
WEATHER RECORD

EVENT TYPE FLASH FLOOD

Cause Heavy rain
State Georgia

County/Area Floyd
Begin Date 01/22/2017, 20:20

Begin Location 1SW COOSA
End Date 01/23/2017, 03:30

End Location 1SW COOSA
REPORTED DAMAGE

Deaths 0
Injuries 0

Property damage $40,000
Crop damage $0

Episode Narrative The atmosphere over north and central Georgia was extremely moist and unstable.

Note. The complete record can be retrieved from NOAA’s Storm Events Database.

Figure 3 Illustration of the network.

Note. Based on our Definition from Section 2, the i, j − th element of matrix Pt equals one if contractor i and agency-office
j were executing a project at time t.

3.5. Mapping the network

From the project records, we retrieve each project’s start and actual completion date to create a

network that includes M = 124, 026 contractors and N = 3, 559 awarding offices, and that spans the

years 2011 through 2015. We use quarter-years as our time unit of analysis.7 The structure of the

network changes in each quarter, as does its adjacency matrix—depending on which projects are

currently being executed, and which ones have ended. This means that we have a unique matrix Pt,

and line graph L(Pt), for each quarter, as illustrated in Figure 3. For instance, if project pij began

at t= 1 and concluded at t= 5, then the (i, j)th element would equal one in Matrices P1 to P5, but

zero in Matrices Pj for j ≥ 6.

7 Given that disruptions are relatively rare occurrences and project timelines are long, this time window is adequate
and consistent with what is used in the literature (e.g., Barrot and Sauvagnat 2016).
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Figure 4 Illustration of a project timeline.

3.6. Mapping the disruptions
Using severe weather events at a project site allows us to obtain clean and unbiased estimates of the
causal effect of disruptions on the project network. This is due to the following reasons.
1. Weather-induced disruptions are random and exogenous. The occurrence of weather disruptions is
random, exogenous, and independent of the nature of the project task. This is unlike other disruptions
such as a labor strike or a machine breakdown which may be affected by the actions of the contractor
or the agency.
2. All weather disruptions are recorded without omission. Since the NOAA data is independent of
USAspending, we observe severe localized weather events at a project site even if they are not
documented as disruptions in the project records. All other types of disruptions compel us to rely
solely on project modification records, which could introduce biases. For instance, we will not be
able to ascertain if there were unrecorded machine breakdowns or paperwork issues. In theory, these
disruptions should be recorded by the contracting officers but there we cannot determine if any
recording biases or omissions occur.
3. The severity of the event can be objectively measured. Using data from the NOAA’s weather
records, we can ascertain the degree of severity of disruptive events such as hurricanes, storms, or
tornadoes. We also know the precise areas that were affected by the event, and the overall property
and material damage resulting from it. Unlike the disruptions reported in the modification records,
the severity recorded for weather events are quantifiable and not subjective.
4. We observe the exact disruption time. Another benefit of using NOAA’s records is that we observe
the exact time when a weather disruption occurred. In contrast, there is likely some lag between the
event and the date in which the modification record was logged in project records.

Collectively, these reasons will allow us to measure spillovers consistently and without questioning
the nature, endogeneity, or accuracy of the event.8

8 While weather disruptions lend themselves to cleaner estimation, in Appendix C, we re-estimate our results by
including other types of disruptions.
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3.7. Mapping the timelines

By combining information from the two data sources, we created a timeline for every project in
our network. In particular, we use (i) the project and modification records to obtain each project’s
start date, initial deadline, and changes to the completion date; and (ii) weather records to obtain
disruptions affecting a given project.

To calculate delays, we obtain information on changes to a project’s completion time. Consider,
for example, a project with the timeline illustrated in Figure 4. Using project records, we could
ascertain that this project started at Day = 1, had an expected completion date at Day = 60, but
was ultimately completed at Day= 80. Moreover, using weather records, we could observe that this
project was affected by a disruption at Day= 40 arising from a flood caused by a storm.

4. Econometric model
Here we present the identification strategy used to test the baseline hypothesis, which states that a
localized disruption in one project will propagate through the network by indirectly increasing the
likelihood and magnitude of delays at connected projects.

4.1. Designing an identification strategy

In designing an identification strategy, it is helpful to imagine an “ideal” controlled experiment to
estimate disruption spillovers in a project network. Our experiment would begin by picking a large
set of projects (say, 10,000 pavement repair projects), all of which are disconnected from each other.
We would then create a localized disruption at half of these projects (at different times), while the
other 5,000 projects remain undisturbed. After each (simulated) disruption event, we would compare
(i) the pre- and post-event performance of projects connected to the disrupted project, to (ii) the pre-
and post-event performance of projects not connected to the disrupted project. We can confidently
infer network spillovers if the first group of projects consistently falls behind schedule and the timing
coincides with each disruption event.

While this “ideal” experiment is clearly infeasible in practice, we can design an identification
strategy that resembles it. To do so, we will need to formally define a disruption and find a way to
consistently measure a disruption spillover. We formally define a disruption event as follows.

Definition 2. Let δp,t ∈ {0, 1} define a disruption event, such that δp,t = 1 if project p experienced
a disruption in period t, and δp,t = 0 otherwise.

To measure how disruptions spill over in the project network, our identification strategy will
compare hundreds of thousands of projects that are similar across dozens of characteristics, including
task, location, timeline, and contractual terms. However, these projects will differ in one important
way, namely, that they will have different network connections. Consider, for example, two comparable
projects p′ and p′′. These projects will fall into one of three cases in each period (as shown in Figure 5):



15

Figure 5 Three cases for a pair of duplicate projects (p′, p′′)

Note. Two comparable projects, (p′, p′′) may fall into three cases. In Case A (depicted in the leftmost figure), only p′ is
connected to a disrupted project (p̃). In Case B (depicted in the center), both projects were connected to a disrupted project
(p̃ and ˜̃p). In Case C (depicted in the rightmost figure), none of the projects were connected to a disrupted project.

Figure 6 Evidence of disruption spillovers – Illustration

Note. In the three figures above, we show how delays could occur at two duplicate projects—for Cases A, B, and C—in the
presence of disruption spillovers.

Case A. Project p′ was directly connected to a disrupted project (say p̃) but p′′ was not.

Case B. Both p′ and p′′ were connected to different disrupted projects (say p̃ and ˜̃p).

Case C. Neither p′ nor p′′ were connected to a disrupted project.

Comparing the outcomes of p′ and p′′ in all three cases will allow us to assess the existence of

disruption spillovers. In particular, if our hypothesis is correct (and localized disruptions indeed

propagate) then the following will be true:

Case A. Project p′ is more likely to experience a delay after the disruption at p̃ (see Figure 6 (a));

Case B. Both p′ and p′′ are more likely to fall behind schedule, following the disruptions at p̃ and ˜̃p

(see Figure 6 (b)); and

Case C. Neither project is more likely to experience a delay (see Figure 6 (c)).
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Figure 7
Illustration of project matching strategy

Note. The figure above illustrates the process of finding a grouping of duplicate projects.

If this phenomenon is systematically replicated across hundreds of thousands of comparable

projects, then we will be able to confidently conclude that disruptions spill over in the project network.

In the next sections, we will implement this identification strategy.

4.2. Estimation procedure

We use a five-step estimation procedure, which borrows elements from Ho et al. (2007) and Barrot

and Sauvagnat (2016)). Figure 7 illustrates this approach.

Step 1 (Restricting the sample)

We start with a sample of 2.4 million projects, S, and want to determine how projects are affected

by localized disruptions arising elsewhere in the network. This means that both our treatment and

control observations will need to be restricted to the subsample of projects that did not experience

a disruption directly on their site, that is, to subsample S̄ = {p ∈ S : δp,t = 0 for all t}, as shown in

the upper-left pane of Figure 7. In this step, we dropped 287,102 projects or approximately 11% of

the sample.

Step 2 (Partitioning the sample)

Because our dataset is large, we can find thousands of groups of projects that are similar across

multiple characteristics. We partition S̄ into K subsets {s̄1, s̄2, . . . , s̄K} of comparable projects using

Coarsened Exact Matching. This methodology follows four sub-steps:
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1. Define a vector of categorical variables (X′): In our analysis, X′ comprises four categorical
variables, which describe: (i) the task type; (ii) the pricing scheme, (iii) the project’s NAICS
code; and (iv) the geographic location in which the project took place.

2. Define a vector of numerical variables (X′′): In our analysis, X′′ comprises five numerical
variables, which describe (i) the contractor’s annual revenue in the preceding year, (ii) the
number of employees that the contractor employs, (iii) the number of bids the project received,
(iv) the project’s initial duration, and (v) the project’s initial budget.

3. Coarsen variables in X′′: Once the two vectors are defined, the variables in X′′ are coarsened
into discrete categories. For instance, the annual revenue variable may be discretized into four
or five bins.

4. Partition projects. After coarsening the numerical variables, we partition the projects. Two
projects belong to the same partition if they match exactly across all variables in X′ and they
also fall within the same bin for every variable in X′′. Figure 7 shows a partition with two
matching covariates, X1 and X2, where X1 could be a discrete variable with four categories,
and X2 could be a numerical variable that is coarsened into three bins.

Partition granularity. Our dataset allows us to create partitions with varying degrees of granu-
larity — from very fine to very coarse. We could partition the projects using stringent criteria, for
example, by using the four-digit task code (with ≥ 1, 000 categories), the six-digit NAICS code (1,176
categories), and the county where the project is performed (≈ 3, 000 categories). Similarly, we could
create hundreds of discrete bins for each numerical variable using an automated technique such as
the Sturges rule.9 This approach can allow us to get highly accurate matches, but may also sacrifice
valuable data.

To get a more representative sample, we could also match projects using higher level discrete
variables (e.g., the two-digit task code or the state where the project is performed), and manually
specify the number of bins to be created for the numerical variables. To balance the trade-off between
sample size and project similarity, we use several different partitioning approaches and show that
our results are robust (in both sign and significance) to the partitioning approaches. Specifically,
in Table 4, we match projects on the two-digit task code and two-digit NAICS code, and vary the
number of bins (i.e., granularity) for numerical variables. In Table A.2, we progressively alter the
partition granularity by varying the levels for discrete variables (e.g., matching at the county level
and 5-digit, 4-digit, or 3-digit NAICS codes). Further, in Figures A.1 and A.2, we also ran a series of
regressions using other matching methods such as optimal full matching, nearest neighbor matching

9 Sturges algorithm is used to determine the bin size in a data-driven way. This algorithm creates evenly spaced bins
based on the scale of each numerical variable. This technique not only prevents researcher manipulation to “enhance”
the results, but also ensures a good fit.
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with different number of neighbors, propensity score matching with varying caliper sizes, Mahalanobis
distance matching, and Lasso and tree-based approaches. The results are insensitive to the choice of
matching methodology.
Correlation between categories. Finally, we note that there is a correlation among the categories,
but this correlation is both natural and expected. For example, the task of Construction of Marine
Facilities would be confined to coastal counties, and the task of Construction of Air Traffic Control
Towers would only occur in counties with airport facilities. Similarly, it would be quite rare to find
roofing contractors involved in aircraft manufacturing projects. In other words, a given project task
would not require contractors from all industry (NAICS) codes.

This correlation also implies that projects are not uniformly distributed across all possible parti-
tions. Although the number of potential partitions is exceedingly large, reaching into the millions,
a significant portion of these partitions are empty. The majority of observations in our sample are
concentrated within a select subset of partitions. For example, there are over a thousand task cate-
gories, but 81.37% of the projects fall within the top 200 tasks. Conversely, the bottom 200 categories
comprise less than 2% of the sample. The concentration of project tasks simply reflects the fact that
some tasks are inherently rare (e.g., construction of dams), while others are quite common (e.g.,
repair of office buildings).

Another potential concern with the data is that the NAICS code and task category could be
highly correlated. While there is some correlation, it is not a perfect match. For instance, a firm with
the NAICS code 238160 (Roofing Contractors) or 238110 (Poured concrete foundation and structure
contractors) are involved in various types of repair tasks.

Step 3 (Classifying observations by treatment status).

We want to compare the outcome of “treated” and “untreated” projects in a given time period.
To this end, we expand each partition s̄k by period, generating partitions s̄k(t) for each t, where t
is measured at the quarter-year level. This means that while partition s̄k represents projects with
similar characteristics across the sample, s̄k(t) stands for projects within the partition that were
active at time t. Figure 7 illustrates the sample expansion across three periods.

We say a project p is treated at time t if an adjacent project was disrupted at time t; otherwise,
we say that the project was untreated. Formally, we have the following definition.

Definition 3. Let τp,t ∈ {0, 1} define the treatment status of project p at time t, such that τp,t = 1
if there exists a p̃∈ ψ1(p) such that δp̃,t = 1.

In Appendix D, we show the distribution of partitions in terms of cardinality under the most
stringent matching criteria (i.e., using four-digit task code, six-digit NAICS code, and county). The
sample includes a total of 677,558 project-quarter partitions and, in a given period, about 19.5% of
the projects were treated.
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Step 4 (Assigning weights to the sample partitions).

To determine how a localized disruption propagates, we compare treated and untreated projects

within the same partition. To this end, we use Ho et al. (2007)’s weighting technique to obtain a

weight vector, W , which assigns weights wp,t to each project p in partition sk(t). The weighting

technique assigns a weight of one to each matched treated project. The matched untreated projects

are assigned weights that balance the variation in the number of treated and untreated observations

both within and across partitions. Unmatched observations are assigned a weight of zero. For further

details, please see Ho et al. (2007).

We end up with up to 50,000 identifiable partitions along agency and contractor nodes under

different matching methodologies (see Table 4). Altogether, approximately three million project-

quarter observations are used to estimate the effect.

Step 5 (Running a weighted diff-in-diff estimator).

As in a prototypical diff-in-diff model, the key idea is to compare the incidence of delays (i) pre-

disruption and post-disruption (the time-level difference) and (ii) across the treated and untreated

units (the group-level difference). But our model differs from a canonical diff-in-diff model in four

aspects:

1. We observe units across multiple periods, instead of two periods.

2. The treatment affects units asynchronously, instead of being a synchronized treatment (because

a localized weather event can occur at any time).

3. Observations can be treated multiple times, instead of only once (because a project can be

affected by a localized network disruption several times within the timeline).

4. The effect of a shock dissipates across time (because a storm is a one-time event with a

temporary effect rather than a persistent policy).

Collectively, these four conditions make our identification stronger. For instance, Condition 2 means

that our shock is less likely to be confounded by time-specific unobservable shocks that are correlated

with the treatment date (which is one of the biggest drawbacks of a prototypical diff-in-diff model).

And Conditions 3 and 4 allow us to observe the impact of a shock on the same unit of analysis, but

at different times.

To properly model this empirical setting, we use a multi-period diff-in-diff model with recurrent

and temporary treatment spells, developing a methodology that borrows elements from Barrot and

Sauvagnat (2016) and Callaway and Sant’Anna (2021)’s doubly-robust estimators.

We let Yp,t denote the completion time of project p at time t. Then,Delayp,t = Yp,t −Yp,t−1 measures

the reported delay for project p in time t. Using the weights vector, W , we estimate the weighted
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average delay of the treatment and control units as follows. With a slight abuse of notation, we let
τ = 1 represent all treated projects, and τ = 0 represent all control projects.

Delayτ
W =


∑

wp,tτp,tDelayp,t∑
wp,tτp,t

if τp,t = 1∑
wp,t(1−τp,t)Delayp,t∑

wp,t(1 − τp,t)
if τp,t = 0

Using this weighted average, we can obtain a diff-in-diff estimate, which will compare the delays in
the treated group against the delays in the control group, as follows.

βDD =Delay1
W −Delay0

W = (Y 1
p,t − Y 1

p,t−1)W︸ ︷︷ ︸
Weighted delay for

treated projects in time t

− (Y 0
p,t − Y 0

p,t−1)W︸ ︷︷ ︸
Weighted delay for

control projects in time t

To estimate the diff-in-diff effect (βDD), we set Delayp,t as the model’s dependent variable, and
regress this differenced variable against a time-specific treatment indicator (τp,t), a vector of fixed
effects, and project controls, i.e.,

Delayp,t = f( τp,t︸︷︷︸
Treatment variable

, γcontractor︸ ︷︷ ︸
Contractor FE

, γagency︸ ︷︷ ︸
Agency FE

, γtask︸ ︷︷ ︸
Task FE

, γprice︸ ︷︷ ︸
Price FE

, Xp︸︷︷︸
Project controls

, ϵp,t︸︷︷︸
Error term

| W︸︷︷︸
Weights vector

)

The control variables are specified in each regression table’s caption, and all errors are robust and
clustered at the project level. We also consider other levels of clustering and alternate standard error
computations (in Appendix A.6) to ensure our estimates are robust. Since we use matching along
with an outcome regression, our estimation is doubly robust and will yield statistically consistent
estimates (as only one of the two models needs to be correctly specified)—see Funk et al. (2011).

5. Results
Table 4 presents estimates of the extent to which a disruption in one project spills over to concurrent
projects by respectively looking at the spillover effect across (i) agency-connected nodes (Columns
I-VI) and (ii) contractor-connected nodes (Columns VII-XII). For instance, if a disruption were to
affect a project jointly executed by Agency a and Contractor c, then: (i) Columns I-VI’s estimates
would capture the spillover effect across projects directly connected to a, whereas (ii) Columns VII-
XII’s estimates would show this same effect across projects connected to c.10

This table includes diff-in-diff estimates for 24 different specifications (two regressions per column).
The top estimate is from a logistic model in which the outcome variable, Delayp,t, is a binary variable
that equals one if there was a positive delay and zero otherwise.11 The bottom estimate in each

10 For illustration purposes, Table 4 only display the diff-in-diff treatment effect and omit the single difference esti-
mates and the coefficient estimates of the control variables.
11 Binary estimates are interpreted as probabilities for ease of exposition.
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Table 4 Spillover effect
Agency nodes Contractor nodes

I II III IV V VI VII VIII IX X X1 XII
Dep. variable:
Delay probability 0.10∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.12∗∗∗ 0.17∗∗∗ 0.07∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.08∗∗∗ 0.05∗∗∗ 0.13∗∗∗

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03)
Delay days 3.25∗∗∗ 3.28∗∗∗ 3.41∗∗∗ 3.74∗∗∗ 3.73∗∗∗ 4.89∗∗∗ 3.24∗∗∗ 4.12∗∗∗ 4.00∗∗∗ 4.32∗∗∗ 3.19∗∗∗ 6.01∗∗∗

(0.47) (0.48) (0.50) (0.53) (0.56) (0.89) (0.62) (0.65) (0.69) (0.78) (0.86) (1.47)

Agency FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Contractor FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Task FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Matching specification:
Number of bins 2 2 3 4 5 Sturges 2 2 3 4 5 Sturges
Location No State State State State State No State State State State State
Identifiable partitions 22,219 49,299 52,508 52,461 51,412 29,884 19,158 45,183 46,756 45,944 44,674 24,006
Observations 1,118,720 706,319 583,401 491,846 432,645 139,532 1,087,065 666,372 539,474 445,101 391,094 117,751
R2 0.23 0.25 0.25 0.26 0.26 0.31 0.08 0.10 0.10 0.11 0.11 0.15

Note. This table presents the estimated coefficients for the spillover effect of a network disruption on delay days and delay
probability. Columns I-VI show the effect for projects connected through the agency nodes, and Columns VII-XII show the effect
for projects connected through the contractor nodes. Treated and control projects are always matched on two-digit task code,
two-digit industry code, and four price categories, and numerical variables (number of bids, initial budget, initial duration, annual
revenue, and number of employees) using different levels of coarsening. In Columns I and VII, numerical variables are coarsened
into two bins. Columns II-VI and VIII-XII gradually increase the number of bins yielding finer partitions. All specifications
include fixed effects for the agency, contractor, and project task. The standard errors (reported in parentheses) are robust and
clustered at the project level. Significance levels: 10% (∗), 5% (∗∗), and 1% (∗∗∗)

Figure 8 Delay days treatment effect conditional distribution (on projects reporting a delay)

Note. These plots show the distribution of the treatment effect across each control-match pairs, for the estimates obtained in
Table 4 (conditional on experiencing a positive delay). The conditional average treatment effect is (i.e., for all delayed treated
projects) is depicted by the vertical dashed lines.

column is from a linear model in which the outcome variable, Delayp,t, is a continuous variable that
measures the reported days of delay. Each column displays results from a unique combination of
matching specifications, and includes contractor, task, and agency fixed effects.

A look at all 24 regression estimates show evidence of a large, positive, and statistically significant
spillover effect (both across agency and contractor nodes). For instance, the logistic regression esti-
mates from Column XII should be read as follows: suppose we take two identical projects, p1 and
p0, which are executing the same task, in the same location, in the same period, and under the same
contractual terms. Moreover, suppose that neither p1 nor p0 have experienced a disruption at their
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site. In fact, the only observable difference between these two projects is that p1 was connected to
a disrupted project (via the contractor), whereas p0 was not. This difference alone tells us that p1

is 13% more likely to experience a delay following the disruption in a given year-quarter. And, as
Figure 8 shows, the average delay in p1 (if one were to happen) would have an average magnitude of
52 days. Thus, the expected spillover effect amounts to about 0.13 × 52 = 6.7 delay days.12 Naturally,
this calculation yields somewhat similar results to the estimates from the linear model in Column XII
of Table 4, which uses Delay Days as the dependent variable and finds an average effect equivalent to
6.01 days.13 When it comes to agency-connected nodes, Columns I-VI show that the spillover effect
is also positive and significant at the 1% level.

In summary, we find that when an external localized disruption hits one project, its impact prop-
agates to adjacent projects. Below, we study whether this effect spills over to multiple tiers, and also
examine the impact on the project which was directly affected by the disruption.
Multi-tier spillovers. We extend our analysis to see how spillovers propagate beyond the first tier.
We begin with the second-tier spillover effect, by using Definition 2 and redefining a treated unit as

τp,t =

{
1 if there exists p̃∈ ψ2(p) s.t δp̃,t = 1
0 otherwise

.

Estimating the second-tier spillover poses complications, both in terms of identification and compu-
tation. The main issue arises in terms of identification—the density of the network makes it harder
to match treated/untreated pairs, given that the number of untreated observations reduces substan-
tially.14 A secondary issue is that it is computationally intensive to obtain the second order of the
project’s adjacency matrix, which is necessary to identify such spillovers. Both issues are common
across network studies that attempt to record multi-tier spillover effects (see Goldsmith-Pinkham
and Imbens 2013).

We were able to identify the treatment effect on a sample of 59,347 treated and untreated projects.
Table 5 shows that the spillover effect of the disruption propagates to the second tier. The second-tier
spillover is robust and positive but the magnitude of the effect decreases relative to the first-tier
spillover. In other words, we find evidence that localized disruptions propagate to the second tier
though the effect reduces.

We also find some evidence of a spillover propagation to the third-tier, albeit the effect is much
smaller. As mentioned before, analyzing the spillover effect beyond first tier is computationally chal-
lenging and the number of untreated units reduces significantly. This is even more true for the third
12 Expected Delay Spillover = Delay likelihood (Column XII estimate) × Avg delay magnitude (Figure 8) = 0.13 ×
52 = 6.7 delay days
13 The slight difference in these two figures lies in the fact that the first calculation (of 6.7 delay days) results from
the product of a logistic fit and the distributional average, whereas the second estimate (of 6.01 delay days) results
from a regression fit.
14 Note that, by definition, an untreated project is one that had no disrupted connections.
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tier analysis. We, therefore, refrain from making conclusive claims about spillover effects at the third
tier (or beyond).

Table 5 Second-tier disruptions

I II III IV V

Delay probability 0.15∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗

(0.03) (0.04) (0.04) (0.04) (0.04)
Delay days 3.28∗∗ 3.11∗∗ 3.28∗∗ 3.23∗∗ 2.99∗∗

(1.30) (1.30) (1.31) (1.31) (1.33)
Contractor FE Yes Yes Yes Yes Yes
Agency FE No Yes Yes Yes Yes
Task FE No No Yes Yes Yes
Price FE No No No Yes Yes
County FE No No No No Yes
Observations 145,232 145,232 145,232 145,232 145,232
R2 0.21 0.21 0.22 0.22 0.23

Note. This table presents the estimated coefficients for the delay days and delay probability due to a disruption
originating in the second-tier of the project network. Column I presents the specification that includes contractor
fixed effects. Columns II, III, IV, and V add to this specification by including fixed effects for agency, task, price,
and county, respectively. The standard errors (reported in parentheses) are robust and clustered at the project level.
Significance levels: 10% (∗), 5% (∗∗), and 1% (∗∗∗)

Directly disrupted projects. We have shown how localized disruptions propagate in the project
network. But what happened to the project that was directly disrupted by the storm? And how did
the disruption impact its operations? Was this impact moderated by the network?

We paired all projects that were directly disrupted by a given localized event—for instance, all
projects that were disrupted by a given hail storm in Wichita County, Kansas. In our sample, the
median weather event disrupted four projects. We then regressed the impact of this event as a function
of (i) the project’s characteristics, (ii) the characteristics of the contractor and the agency, and (iii)
the number of network connections each project had. We run the following statistical model.

Delayp,t = f( αp,t︸︷︷︸
fixed effects

, Xp
p,t︸︷︷︸

project traits

, Xa
p,t︸︷︷︸

agency traits

, Xc
p,t︸︷︷︸

contractor traits

, Connectionsp,t︸ ︷︷ ︸
number of network connections

)

By analyzing this sample of projects, via a linear-in-means model, we obtain the estimates found
in Table 6. Collectively, these findings lead us to conclude that when multiple projects are directly

disrupted by the same event, the ones with fewer network connections have a statistically significantly
higher delay likelihood and magnitude (after controlling for potential confounders). Simply put, the
same disruption event seems to have a more damaging effect when the project participants are
executing fewer projects. Thus, a disruption event is fully absorbed by the disrupted project when
it is operating in isolation. When the project has more network connections, however, the impact
of the disruption is smoothed out across the network, and partly absorbed by connected projects.
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This means that a localized disruption event is cushioned by the network peers, which are in some
way ‘taxed’ by the event. Put another way, the project network inadvertently ends up acting as an
insurance net for localized disruptions.

Table 6 Directly disrupted projects

Delay days Delay likelihood
I II III IV

Constant 21.40∗∗∗ 0.09∗∗∗

(0.89) (0.003)
Number of connections -0.18∗ -0.25∗∗∗ -0.0008∗∗ -0.0010∗∗∗

(0.09) (0.09) (0.0003) (0.0003)
Fixed effects No Yes No Yes
Controls No Yes Yes Yes
Observations 48,880 48,880 48,880 48,880

Note. This table presents the estimated coefficients for the delay days and delay probability at directly
disrupted projects as a function of their network connections. The standard errors (reported in parentheses)
are robust and clustered by the disruption event. Significance levels: 10% (∗), 5% (∗∗), and 1% (∗∗∗)

Robustness checks. We conduct several robustness tests to validate our findings (see Appendix A).
For instance, we employ two alternative metrics to measure delays, namely, delay relative to project’s
initial duration and delay relative to a project’s last reported duration. We also re-estimate our
results using fifteen different matching methods, and by employing alternative partition granularity.
Finally, we perform cross-sectional and inter-temporal placebo tests, and also consider alternative
specifications of the standard errors.

6. Are resources reallocated after a disruption?
We argue that the observed spillovers are driven, at least in part, by a reallocation of resources.
In other words, the disruption spills over because participants draw resources from the connected
(treated) projects to put into the disrupted projects. Text records from our dataset provide anecdotal
evidence for this mechanism:

• Modification to add 16 additional work days due to weather conditions and delays caused by another contractor
outside of the control of the prime contractor.

• The purpose of this modification is to accept the transfer of materials from another contract to this contract.
• Modification to extend the performance period due to weather delays, having to pull sub-contractors off project

in order to work the government’s #1 priority project.

Although these anecdotal accounts are consistent with our hypothesis, we cannot directly observe
how the project participants utilize their physical and human resources. And even if such data
could be gathered, some resources are inherently unobservable—we cannot, for example, measure
the managerial time spent on troubleshooting a project. However, we can still provide empirical
evidence pointing towards a resource reallocation. We do so by showing that spillovers are more likely
whenever participants can easily reallocate resources, or if they have incentives to do so. Specifically,
we consider the following four channels:
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I. Geographic distance. Consider a hospital construction project in San Bernardino, CA, that gets
disrupted by a localized weather event. Now, suppose that the contractor is concurrently managing
two other projects: one in San Diego, CA and one in Boston, MA. In this scenario, it is easy to move
slack equipment and workers from San Diego to bring the disrupted project up to speed, but it is
expensive, if not infeasible, to reallocate such resources from Boston. Accordingly, if the resource
reallocation hypothesis is true, we should observe a greater spillover effect for projects that are
geographically closer to the disrupted project, and a lesser effect for those that are further away.15

II. Same task category. Suppose a disruption occurs in an asphalting project, and the contractor is
concurrently managing two other projects: (i) another asphalting project and (ii) a plumbing project.
The contractor can reallocate task-specific resources (e.g., asphalting machines) from the first project.
It is far-fetched, however, to argue that plumbing tools can be useful at all. Thus, if our hypothesis
is correct, we should observe that a disruption spills over more strongly to concurrent projects that
carry out the same task as the disrupted one.

III. Performance-based incentives In Section 3.2, we discussed that federal projects are often
acquired under a performance-based acquisition scheme. On these projects, contractors receive
explicit contractual incentives for project outcomes and are, therefore, fully accountable for any
delays or failures. Consequently, performance-based acquisition lessens agency oversight, shifting the
burden of project performance onto contractors. This means a contractor will be more motivated to
shift resources to prevent a delay under performance-based acquisition, whereas the agency will have
fewer incentives to do so. Therefore, when the disrupted project includes performance incentives, we
expect the spillover effect to be greater on concurrent projects held by a contractor, and lesser effect
on concurrent projects that are held by the agency.

IV. Relative-project importance. Suppose we observe a disruption affecting two projects: Project
X, a high-profile project with a large budget, and Project Y, a small project involving a modest
budget. Participants in Project X will have a greater incentive to keep it on track and, as a result,
to reallocate resources to keep it on schedule. Therefore, we expect the spillover effect to be larger
when the budget of the disrupted project is higher than that of the connected projects.

To test the above hypotheses, we estimate the treatment effect for each treated project (Ho et al.
2007) and examine how it varies with respect to the four channels identified above. For instance,
we compare the average treatment effect on projects that are performing the same task as the
disrupted project, relative to the average treatment effect on projects that are performing a task that
is different from that of the disrupted project.16 This is analogous to the approach in Callaway and

15 Recall that the control projects are located at a very similar location from the treated project (e.g., the matched
control project would also be located in San Diego or Boston, just like the treated one). Thus, this indirect effect
would also influence the control project and, accordingly, would not be confounded.
16 To do so, we restrict our sample to those treated projects that are connected to only one disrupted project.
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Sant’Anna (2021) that estimates treatment effect heterogeneity by studying how “group-time average
treatment effect” varies with the parameters of interest. Table 7 shows evidence of the aforementioned

Table 7 Diff-in-diff estimates as a function of incentives to reallocate resources

Treatment effect (in days)
Agency nodes Contractor nodes

I II III IV V VI VII VIII
Geographic distance -0.91∗∗∗ -0.97∗∗∗

(100s of miles) (0.34) (0.17)
Same task category 3.81∗∗ 6.47∗∗

(1.86) (2.58)
Performance incentives -4.15∗∗∗ 6.71∗∗∗

(1.43) (1.82)
Relative project value 0.07∗∗ 0.36∗∗∗

(0.04) (0.13)

Task FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Num treated 11,394 31,710 31,710 31,409 19,413 25,875 24,517 21,828
R2 0.09 0.01 0.05 0.05 0.16 0.14 0.16 0.14

Note. This table presents the estimated coefficients for the treatment effect as a function of participants’ incentives to
reallocate resources. Each specification controls for the project’s initial budget and duration, and number of connections; and
includes or excludes task fixed effects. Columns I-IV presents the results for spillover effect along agency nodes, and Columns
V-VIII shows the results for contractor nodes. The standard errors (reported in parentheses) are robust and clustered at the
project level. Significance levels: 10% (∗), 5% (∗∗), and 1% (∗∗∗)

moderating effects. Estimates in Columns I and V tell us that, for example, the spillover effect reduces
by approximately 1 day for every 100 mile increase in the distance between the disrupted project and
the treated project. Thus, distance is a significant negative moderator of the spillover effect. Columns
II and VI show that the expected size of the spillover significantly increases when the connected
project has the same task category code as the disrupted project. Columns III and VII show that
when the disrupted project includes performance-based incentives, the spillover effect is lower across
agency-connected nodes, but significantly higher across contractor-connected nodes. As discussed
earlier, this is because performance-based projects impose opposing incentives on contractors and
agencies. Finally, Columns IV and VIII show that the spillover effect is larger when the budget of
the disrupted project is considerably higher than the budget of the concurrent projects.17

7. Which resources are reallocated after a disruption?
Having provided evidence in support of resource allocation, we now turn to the question of which types
of resources are being reallocated between projects. We conjecture that machinery and equipment is
easier to reallocate between projects as opposed to labor or managerial effort. We test this hypothesis

17 Our estimation assumes that network structure is orthogonal to the treatment, in that there is no treatment-
induced endogenous change in the network. This is plausible because the treatment is exogenous and network links
between agencies and contractors are established according to policies outlined in the federal acquisition regulations.
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in two ways: (1) examining the extent of capital-intensive inputs used in a project, and (2) examining
the role of government furnished property and equipment that agencies manage.

7.1. Capital-intensive resources

Projects primarily use two types of inputs: capital and labor. We compare how reallocation externali-
ties propagate in the network when disruptions affect capital-intensive versus labor-intensive projects.
To this end, we calculate the capital-to-labor ratio (CLR) for each task following the approach
in Calvo et al. (2019) and Serpa and Krishnan (2018). The CLR represents the average value of
equipment capital expenditure (in dollars) per employee on a given task. For instance, the task of
constructing highways and roads is more machine intensive (with a CLR of 3.81), whereas the task
of constructing water supply facilities is relatively more labor-intensive (and has a CLR of 0.02).
The CLR varies from 0.01 (lowest percentile) to 3.81 (highest percentile) with a median of 0.10.
Given that the distribution is highly skewed, we normalize it by taking a log-transformation and,
then, regress the conditional treatment effect as a function of the logged CLR. Table 9 shows that

Table 8 Sample task categories and their average capital-to-labor ratio

Code Task description CLR
Y1LZ Construction of Parking Facilities 0.013
Y1NE Construction of Water Supply Facilities 0.02
N073 Installation of Equipment- Food Preparation and Serving Equipment 0.12
Y1ND Construction of Sewage and Waste Facilities 0.22
Y222 Construction of Highways, Roads, Streets, Bridges, and Railways 3.81

Table 9 Diff-in-diff estimates as a function of resources used

Treatment effect (in days)
Agency nodes Contractor nodes

I II III IV V VI VII VIII
Intercept 8.30∗∗∗ 15.37∗∗∗ 9.65∗∗∗ 22.73∗∗∗

(1.21) (1.73) (1.57) (2.47)
Government-furnished property 11.16∗∗∗ 8.08∗∗∗ -10.67∗∗∗ -2.64

(2.36) (2.44) (3.25) (3.31)
Capital-to-labor ratio 1.97∗∗∗ 2.01∗∗∗ 5.10∗∗∗ 3.09∗∗∗

(0.39) (0.41) (0.76) (0.91)

Task FE No Yes No Yes No Yes No Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Num treated 31,710 31,710 31,707 31,707 25,875 25,875 25,873 25,873
R2 0.005 0.05 0.005 0.05 0.08 0.13 0.08 0.13
Note. This table presents the estimated coefficients for the treatment effect as a function of resources used on a project. Each

specification controls for the project’s initial budget and duration, and number of connections; and includes or excludes task
fixed effects. Columns I-IV presents the results for spillover effect along agency nodes, and Columns V-VIII shows the results for
contractor nodes. The standard errors (reported in parentheses) are robust and clustered at the project level. Significance levels:
10% (∗), 5% (∗∗), and 1% (∗∗∗)

disruption externalities propagate more when the disrupted project is capital-intensive i.e., it uses
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more capital equipment than labor. For a 1% increase in a task’s CLR, the treatment effect increases
by 0.02 days across agency-connected nodes and 0.03 days across contractor-connected nodes. Thus,
participants tend to reallocate resources more when the disrupted projects rely heavily on machin-
ery (instead of relying on labor). This is intuitive because machinery (e.g., excavators) is typically
standardized and can be easily transferred to other similar projects, while workers might need to
adapt to project-specific conditions. Furthermore, transporting machinery is a straightforward pro-
cess whereas relocating labor is more complex, requiring accommodations and potential disruptions
to the workers’ lives. Labor regulations also complicate the reallocation of human labor between
projects, particularly across states due to labor laws and collective agreements.

An alternative explanation for the observed results could be that weather-related disruptions
require additional machinery capacity rather than labor. However, in Appendix C, where we directly
measure disruptions affecting labor, we do not find any evidence of spillover effects on the network,
which makes this explanation less plausible.

7.2. Government-furnished property

In some projects, the federal government provides equipment and machinery for the execution
of tasks—these resources are referred to as government-furnished property and are managed by
agency offices. We test whether government-furnished property is a resource that is being reallo-
cated between projects in the event of a network disruption. To that end, we use a binary variable
from the USAspending dataset that indicates whether or not a given project relies on government-
furnished property. If government-furnished property is indeed one of the resources being real-
located, we should see greater spillover effect on agency nodes when disrupted project utilizes
government-furnished equipment. Conversely, the treatment effect should be considerably smaller
across contractor-connected nodes when the disrupted project uses government-furnished property
(because contractors do not have the authority to (re-)allocate GFP).

Table 7 substantiates our hypothesis—the treatment effect is significantly higher on agency-
connected nodes when the project uses government-furnished property, while the effect is statistically
and numerically insignificant on the contractor nodes (after controlling for project task).

8. Concluding remarks
In this paper, we show that a seemingly localized disruption at a project can spill over and delay
other projects that are linked in a “network” through shared contractors and clients. We demonstrate
that this spillover effect is caused by participants reallocating resources between projects.

Previous research has recognized and studied spillover effects in supply chains and social networks.
For instance, studies have shown how shocks propagate across production networks—including shocks
related to innovation and productivity (see Bellamy et al. 2014, Serpa and Krishnan 2018), economic
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uncertainty (see Osadchiy et al. 2016), disruption events (see Jain et al. 2022, Schmidt and Raman
2022), and financial risk (see Wang et al. 2021).

Supply chain networks are well-defined and observable, but the notion of a project “network” is
not well established. There is at best some recognition that contractors own a portfolio of projects
and that there is interdependency within this portfolio (see, for example, Girotra et al. 2007’s work
on pharmaceutical project portfolios). By mapping the network of U.S. federal projects and using the
occurrence of severe weather events at a project site as the exogenous source of disruptions, we show
how interdependencies don’t just exist within project portfolios but also extend to multiple tiers.

Project delays have complex and multi-faceted causes ranging from poor planning by contractors to
poor oversight by clients. Our work contributes to the extensive literature on project management by
identifying disruptions at connected projects as an under-explored cause of delays. We show that such
delay spillovers are statistically significant i.e., project managers face negative “resource reallocation
externalities” due to disruptions elsewhere in the network. In Appendix B, we estimate the economic
cost of (first-tier) delay spillovers using methods commonly used by project managers and courts
to assess the dollar value of a delay. We find that network disruptions and resulting re-allocations
impose an additional cost of at least $4,927-$10,107 per quarter on the connected projects.

Although our analysis relies on data from U.S. public projects, similar resource reallocation dynam-
ics apply to any project network. If, for example, a home renovation project falls behind schedule, its
contractor will likely pull resources from other similar projects to bring it up to speed. Doing so will
consume slack from other home renovation projects and make them more vulnerable to delays. We
argue that this fundamental insight would apply to all project networks – public or private. However,
one feature that is idiosyncratic to public projects is that clients (i.e., government agencies) play
an active role in managing projects and allocating resources (e.g., through their ability to deploy
government-furnished property). Consequently, reallocation spillovers through client nodes may not
apply to private projects. We also note that mapping the network of private projects is typically
infeasible due to data availability limitations. In contrast, the USAspending dataset allows us to map
a large network of projects and quantify the interdependency between them.

Our results also connect to the literature on process flexibility and chaining (Jordan and Graves
1995). While the chaining literature emphasizes the benefits of being able to share resources in a
network, we highlight the potential downside of these network connections i.e., our results point to
a “dark side” of operational flexibility. In a traditional chaining context—e.g., a chain of production
facilities—the decisions are made by a central planner. In a project context, resource reallocation deci-
sions are made by self-interested decentralized agents without considering the negative externalties
on other participants in the network.
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This prompts the question of whether operational buffers can mitigate reallocation externaltiies.

We conjecture that large contractors may be able to invest in safety capacity and pool resources

across projects. Therefore, their projects may be able to absorb the effect of a localised disruption

without triggering extensive resource reallocations between projects. We provide evidence supporting

this claim in Appendix D.

While we identify the problem of resource reallocation externalities in project networks, our analysis

also provides insights into tackling this issue. First, we note that contractual incentives that reward

or penalize performance on a single project can exacerbate reallocation externalities. We conjecture

that “network-based project incentives” that evaluate participants based on their performance across

a project network (and not just a single project) could mitigate inefficient resource reallocations.

Furthermore, researchers have recommended “reference class forecasting” as a way of improving

project planning and performance (see, for example, Flyvbjerg 2006). Reference class forecasting

seeks to predict a project’s budget and schedule based on similar past projects. The results of our

study add another dimension to this recommendation: the role of the project network. Specifically,

we conjecture that current reference class forecasting methods may be improved if the appropriate

reference class included information about concurrent projects in the participants’ networks. Doing

so would require participants (such as agencies and contractors) to have greater visibility into their

project networks i.e., to which projects they are indirectly connected. This paper, therefore, highlights

the value of greater transparency in project networks (similar to the benefits of supply network

transparency that has been highlighted in recent literature – see, for example, Kraft et al. 2023).

We acknowledge that network transparency and coordination is more feasible in public project

networks, due to government sponsored open data initiatives such as USAspending.gov. We conjecture

that our results could enable agency officers to intervene so as to minimize the negative impacts of

reallocation externalities. For example, based on the moderating factors we have identified, agency

officers may be able to modify the timeline and workload for certain projects if they anticipate a

disruption elsewhere in their network.

Projects are routinely delayed and perform poorly. The Project Management Institute estimates

that 48% of the projects globally are behind schedule, and $1 million is wasted every 20 seconds col-

lectively due to poor project management.18 Our research contributes to an improved understanding

of what causes project delays, and what could potentially be done to minimize their negative impact.

We hope that this work will spur more research on project networks, and lead to more actionable

insights on how to allocate resources more efficiently across multiple interconnected projects.

18 Source: $1 Million Wasted Every 20 Seconds by Organizations around the World

https://www.pmi.org/-/media/pmi/documents/public/pdf/about/press-media/press-release/pulse-of-the-profession-2018-media-release.pdf
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Appendix A: Robustness analyses

A.1. Alternative delay metrics

Our models thus far use two delay metrics: Delay Daysp,t (a continuous variable that measures the length
of the delay), and Delay Probabilityp,t (where the dependent variable is an indicator that equals one if there
was a reported delay, and is zero otherwise). In this section, we rerun our analysis with two alternative delay
measures: Relative Delayp,t = 100 × Delay Daysp,t

Initial Durationp
(following Calvo et al. 2019) and Percentage Delayp,t =

100 × Delay Daysp,t
Deadlinep,t−1−Start Datep

. The first measure benchmarks the reported delay days to the baseline project
duration, whereas the second measure benchmarks the number of delay days as a function of the current
projected execution time (i.e., the expected deadline minus the start date). Table A.1 shows that the results
are still significant using these alternative metrics.

Table A.1 Alternative dependent variables
Agency nodes Contractor nodes

I II III IV V VI VII VIII IX X XI XII
Dep. variable:
Relative delay 0.78∗∗∗ 0.46∗∗ 0.47∗∗ 0.73∗∗∗ 0.85∗∗∗ 1.41∗∗∗ 1.36∗∗∗ 1.55∗∗∗ 1.27∗∗∗ 1.44∗∗∗ 1.01∗∗∗ 1.85∗∗∗

(0.16) (0.20) (0.23) (0.22) (0.23) (0.29) (0.25) (0.27) (0.31) (0.31) (0.32) (0.45)
Percentage delay 0.84∗∗∗ 0.62∗∗∗ 0.59∗∗∗ 0.87∗∗∗ 0.98∗∗∗ 1.46∗∗∗ 1.07∗∗∗ 1.11∗∗∗ 0.88∗∗∗ 1.18∗∗∗ 0.82∗∗∗ 1.58∗∗∗

(0.13) (0.16) (0.18) (0.18) (0.18) (0.25) (0.19) (0.21) (0.24) (0.24) (0.27) (0.39)
Agency FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Contractor FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Task FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Matching specification:
Number of bins 2 2 3 4 5 Sturges 2 2 3 4 5 Sturges
Location No State State State State State No State State State State State
Identifiable partitions 22,219 49,299 52,508 52,461 51,412 29,884 19,158 45,183 46,756 45,944 44,674 24,006
Observations 1,118,711 706,317 583,399 491,845 432,644 139,531 1,087,062 666,371 539,473 445,100 391,093 117,750
R2 0.26875 0.28503 0.29281 0.30161 0.30566 0.35856 0.14499 0.16632 0.17381 0.18001 0.18277 0.20990

Note. This table presents the estimated coefficients for the spillover effect of a network disruption on delay relative to a project’s
initial duration, and on delay relative to a project’s current duration. Columns I-VI show the effect for projects connected through
the agency nodes, and Columns VII-XII show the effect for projects connected through the contractor nodes. Treated and control
projects are always matched on two-digit task code, two-digit industry code, and four price categories, and numerical variables
(number of bids, initial budget, initial duration, annual revenue, and number of employees) using different levels of coarsening. In
Columns I and VII, numerical variables are coarsened into two bins. Columns II-VI and VIII-XII gradually increase the number
of bins yielding finer partitions. All specifications include fixed effects for the agency, contractor, and project task. The standard
errors (reported in parentheses) are robust and clustered at the project level. Significance levels: 10% (∗), 5% (∗∗), and 1% (∗∗∗)

A.2. Alternative matching methodologies

In our main analysis, we employed Coarsened Exact Matching to partition projects. In this section, we supple-
ment our analysis by changing the matching methodology to other popular methodologies. In particular, we
re-estimated our main results by using propensity score matching; Lasso-based matching; Tree-based match-
ing; Mahalanobis distance matching; n-caliper matching, with five different calipers (n = 0.1, 0.2, 0.3, 0.4, 0.5);
and k-nearest-neighbor matching (k-NN), where we let k = 2, 3, 4, 5.

Figures A.1 and A.2 show that our results are robust across all methods, both in sign and significance.
Note that the figures only report the results for the regression specification that includes all controls and
fixed effects. However, the regression results were robust across all other specifications.
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(a) Delay days (b) Delay probability
Figure A.1 Contractor nodes – Spillover effect with alternative matching methodologies.

These figures show our main results for spillover effect along contractor nodes under different matching techniques. For instance, the first column in each figure shows the
results from optimal full matching whereas the last column shows the results from propensity score matching with 0.9 caliper size. The bottom panel illustrates the matching
method used (shown in red colored bullets). The middle panel displays the number of observations in each matched sample. The top panel displays the estimated treatment

effect and its 95% confidence interval.
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(a) Delay days (b) Delay probability
Figure A.2 Agency nodes – Spillover effect with alternative matching methodologies.

These figures show our main results for spillover effect along agency nodes under different matching techniques. For instance, the first column in each figure shows the results
from optimal full matching whereas the last column shows the results from propensity score matching with 0.9 caliper size. The bottom panel illustrates the matching method
used (shown in red colored bullets). The middle panel displays the number of observations in each matched sample. The top panel displays the estimated treatment effect and

its 95% confidence interval.
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Figure A.3 Partition granularity

A.3. Exact matching with coarser partitions

As mentioned in Section 4, our dataset allows us to match projects at different levels of granularity. We
could, for example, partition the sample using the 4-digit or 5-digit NAICS code (instead of the 6-digit code),
or the 2-digit or 3-digit task-level code (instead of the four-level digit). We could also partition at the county
level, instead of requiring it to be at the state level.

Partitioning on higher level variables will result in broader (but fewer) partitions with matches that are
slightly less precise. However, it will allow us to utilize most of the observations in our analysis, thereby
yielding a more representative estimation (see Figure A.3 for an example). In Table A.2, we present regressions
in which we progressively altered the granularity of the partition, transitioning from a very fine to a very
coarse partition scheme. As can be seen, the results are largely unaffected by this variation, indicating that
our findings are not solely determined by the choice of partition construction.
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Table A.2 Exact matching with coarser partitions

Agency nodes Contractor nodes
I II III IV V VI VII VIII IX X XI XII XIII XIV

Dep. variable:
Delay probability 0.11∗∗∗ 0.11∗∗∗ 0.12∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.08∗∗∗ 0.05∗∗∗

(0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01)
Delay days 4.02∗∗∗ 4.05∗∗∗ 4.50∗∗∗ 4.33∗∗∗ 4.20∗∗∗ 3.79∗∗∗ 3.36∗∗∗ 5.72∗∗∗ 5.56∗∗∗ 5.30∗∗∗ 5.09∗∗∗ 5.15∗∗∗ 4.20∗∗∗ 2.06∗∗∗

(0.86) (0.83) (0.74) (0.72) (0.65) (0.58) (0.47) (0.97) (0.94) (0.87) (0.85) (0.80) (0.72) (0.64)

Partition granularity:
NAICS code 5-digit 4-digit 3-digit 2-digit 2-digit 2-digit 2-digit 5-digit 4-digit 3-digit 2-digit 2-digit 2-digit 2-digit
Task code 4-digit 4-digit 4-digit 4-digit 3-digit 2-digit 2-digit 4-digit 4-digit 4-digit 4-digit 3-digit 2-digit 2-digit
Location County County County County County County State County County County County County County State
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Agency FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Contractor FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Identifiable partitions 29,405 30,698 33,414 35,239 37,847 41,710 39,058 32,301 33,334 36,442 38,654 41,229 44,266 37,399
Observations 225,965 242,360 294,445 313,043 378,271 512,381 844,315 255,910 270,310 321,144 341,267 403,883 529,356 834,023
R2/Pseudo R2 0.31304 0.31281 0.30370 0.30254 0.30653 0.29567 0.29635 0.18021 0.17703 0.18239 0.17927 0.17129 0.17866 0.16563
Note. This table reports the estimated treatment effect of network disruptions on delay probability and delay days using coarser variables in matching. Columns I-VII report

the results for agency nodes and Columns VIII-XIV report the results for contractor nodes. All regression specifications include fixed effects for the contractor, agency, task,
and price. Standard errors (in parentheses) are robust and clustered by project. Significance levels: 1%∗∗∗, 5%∗∗, 10%∗.
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Table A.3 Statistics for the unadjusted and adjusted distributions of the data

Standardized bias Variance ratio Kolmogorov-Smirnov
Covariate Type Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Annual Revenue – Contractor Continuous 0.04 0.00 1.28 1.00 0.03 0.03
Number of Employees – Contractor Continuous 0.04 0.00 1.25 1.00 0.04 0.03
Number of bids Continuous 0.11 0.00 1.29 1.01 0.04 0.00
Project budget Continuous 0.04 0.01 1.09 1.00 0.02 0.03
Project duration Continuous 0.01 0.01 1.24 1.01 0.05 0.01
Competitively awarded contract Categorical 0.01 0.01 · · 0.01 0.01
Performance-based Incentives Categorical 0.02 0.01 · · 0.02 0.01
Cost contract Categorical 0.01 0.00 · · 0.01 0.00
Fixed price contract Categorical 0.03 0.00 · · 0.03 0.00
Labor hours contract Categorical 0.01 0.00 · · 0.01 0.00
Time and materials contract Categorical 0.01 0.00 · · 0.01 0.00

A.4. Balancing tests of the matched samples

In our main analysis, we matched treated and control observations using coarsened exact matching. In this
section, we verify that, after matching, the treatment and control observations have similar distributional
properties across the matching covariates. We verify distributional balance across three statistics of the
treatment and control samples: (i) the means; (ii) the variances; and (iii) the cumulative distributions (Stuart
et al. 2013):

1. Balance of means. To measure the balance of the distributions’ first moment, we measure the stan-
dardized bias for each variable. We calculate the standardized bias of covariate x by measuring the
absolute difference of the means,

∣∣µtreatment
x − µcontrol

x

∣∣, and dividing this difference by the pooled
standard deviation. As a rule of thumb, the adjusted standardized differences should be smaller than
0.1 (Stuart et al. 2013). Figure A.4 and Table A.3 illustrate the standardized bias for each covariate,
before and after weighting the distributions. These two exhibits show that the distributional means
are balanced.

2. Balance of variances. To explore the balance of the distributions’ variances, we analyze the ratio of the
treatment and control groups’ variance. By convention, we place the largest variance in the numerator;
a ratio of one means that the variances are perfectly balanced and, as a rule of thumb, a ratio below
two is acceptable after adjusting the distributions. Table A.3 shows that the distributions’ variances
satisfy this requirement.

3. Balance of cumulative distribution. We explore the balance of the cumulative distribution functions
via the Kolmogorov-Smirnov statistic, which measures the maximum distance between the support of
these functions. This statistic ranges from zero (perfect balance) to one (full imbalance). By convention,
a value below 0.05 is recommended after adjusting. Table A.3 shows that all our adjusted covariates
meet this recommendation.

In summary, the balancing table results show that the treatment and control samples are balanced in their
means, variances, and cumulative distributions. Figures A.5 and A.6 further illustrate that the density plots
are balanced across several covariates for treated and control observations.

A.5. Placebo tests

A.5.1. Inter-temporal placebo: Testing for parallel trends. Our estimates do not come from a
prototypical diff-in-diff model, so testing for the parallel trends assumption is not straightforward. This is for
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Figure A.4 Balancing test results

Note. This figure illustrates the distributional balance between treated and control observations after matching. The leftmost
panel shows the balance of means, the middle panel shows the balance of variances, and the rightmost panel shows the balance
of cumulative distribution functions.

Figure A.5 Density plots – Contractor

Note. This figure illustrates the distribution plots of the treated and control observations for contractor nodes after matching.

three reasons: (i) observations in our sample can be ‘treated’ repeatedly (a given project can be disrupted at

any point in the time series); (ii) the treatment is not coordinated along the cross-section (i.e., disruptions hit

different projects in different periods); and (iii) the treatment effect dissipates across time (i.e., the impact

of a disruption is not permanent).
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Figure A.6 Density plots — Agency

Note. This figure illustrates the distribution plots of the treated and control observations for agency nodes after matching.

These three peculiarities mean that any “off-the-shelf” parallel-trends test—like Autor (2003)’s placebo
test or a lead-lag test—will not work in our setting. We can, however, still test the fundamental assumption
of a diff-in-diff estimator—that absent a treatment, the outcome of the two groups would have been identical
over time—by performing an adaptation of Monfared and Pavlov (2017)’s inter-temporal placebo test. In this
test, we create 40 synthetic samples, each being identical to the true sample except that we pretend that the
disruption occurred during a different period. Twenty of these datasets are called lagged synthetic samples,
while the remaining twenty are called lead synthetic samples, where (i) the nth lagged sample pretends that
the treatment date occurred n periods before the true event date and (ii) the nth lead sample pretends
that the treatment date occurred n periods after the true event date. The idea is to shift the treatment
date back and forth, one quarter-year period at a time (for a maximum of twenty periods each way), and
then determine how this shift would affect the diff-in-diff coefficients. Figure A.7 plots the value of all forty
placebo coefficients (i.e., Periods, -20,...,-2,-1,1, 2, ,..., 20) and their corresponding 95% confidence interval.
For ease of interpretation, we normalize the value of the true coefficients to 1. According to Monfavred
and Pavlov’s test, if the coefficients are significant and the parallel-trends assumption is valid, then all
lagged placebo regressions would be insignificant (i.e., there are no anticipatory trends). In contrast, the lead
placebo regressions would be significant but the effect should dwindle as time passes. Figure A.7 confirms
this pattern, by showing a lack of anticipatory effects and a lead treatment effect that lingers for two periods
(or six months).

A.5.2. Cross-sectional placebo test. We also conduct a cross-sectional placebo test to determine
if our results are artifacts of spurious correlations in the data. We create 10,000 samples by randomly
assigning disruption occurrences across observations via Bernoulli trials. These 10,000 synthetic samples are
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Figure A.7 Inter-temporal placebo test.

Note. For forty synthetic datasets, we re-estimate our models by artificially setting the disruption time period to be different
from the “true” event date. Twenty of these samples set the “placebo” treatment date before the true event, and twenty set it to
be after the true event. We plot the distribution of p-values for the diff-in-diff coefficient of the forty placebo estimates. When
the p-value exceeds 0.1, it is shaded gray; if the draw of a placebo regression yields a p-value below 0.1, it is shaded black. All
estimates are drawn from regression models including all fixed effects and control variables.

Figure A.8 Cross-sectional placebo test.

Note. For 10,000 synthetic datasets, we re-estimate our model specifications. We plot the distribution of p-values for the
diff-in-diff coefficient of the 10,000 placebo estimates. When the p-value exceeds 0.1, it is shaded gray; if the draw of a placebo
regression yields a p-value below 0.1, it is shaded black. Each of the four plots contains the distribution using a different
dependent variable. All estimates are draw from regressions models including all fixed effects and control variables.

all identical to our true sample except that observations are randomly sorted into the “treated” and “control”
groups. Figure A.8 presents the p-values of the 10,000 placebo estimates. If our true estimates were artifacts
of spurious correlation, then a substantial number of the synthetic samples would have low p-values. But
Figure A.8 shows that a vast majority of the placebo estimates are not even significant at the 10% level.

A.6. Alternative standard errors

In our main analysis, we accounted for serial correlation by clustering the standard errors at the project
level consistent with the recommendation in Bertrand et al. (2004) and Cameron and Miller (2015). In this
section, we assess the robustness of our findings to alternate levels of clustering. Table A.4 shows that our
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estimates are still positive and statistically significant when we cluster the standard errors at the contractor,
agency, county, and task level, or use a combination of contractor and agency level clusters.

We also account for potential temporal correlation in the data, and consider alternative measures of stan-
dard errors. Table A.5 shows that our results are robust to these measures, including heteroscedasticity and
autocorrelation consistent standard errors and heteroscedasticity-consistent standard errors—see Cameron
and Miller (2015) for a detailed discussion of these issues.

Table A.4 Alternative cluster levels

Agency nodes Contractor nodes
I II III IV V VI VII VIII IX X

Delay days 3.74∗∗∗ 3.74∗∗∗ 3.74∗∗∗ 3.74∗∗∗ 3.74∗∗∗ 4.32∗∗∗ 4.32∗∗∗ 4.32∗∗∗ 4.32∗∗∗ 4.32∗∗∗

(0.61) (0.87) (0.73) (0.63) (0.85) (1.11) (1.53) (1.06) (1.01) (1.53)

Cluster level Contractor Agency County Task Agency +
Contractor Contractor Agency County Task Agency +

Contractor
Agency FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Contractor FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Task FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 491,846 491,846 491,846 491,846 491,846 445,101 445,101 445,101 445,101 445,101
R2 0.26 0.26 0.26 0.26 0.26 0.11 0.11 0.11 0.11 0.11

Note. This table reports the estimated treatment effect of network disruptions on delay days by clustering the standard errors
(in parentheses) at different levels. Significance levels: 1%∗∗∗, 5%∗∗, 10%∗.

Table A.5 Alternative standard errors

Agency nodes Contractor nodes
I II III IV V VI VII VIII

Delay days 3.74∗∗∗ 3.74∗∗∗ 3.74∗∗∗ 3.74∗∗∗ 4.32∗∗∗ 4.32∗∗∗ 4.32∗∗∗ 4.32∗∗∗

(0.57) (0.86) (0.53) (0.51) (0.81) (1.30) (0.78) (0.75)

SE Type Newey-West Driscoll-Kraay Degree of
Freedom Bell-Mcaffrey Newey-West Driscoll-Kraay Degree of

Freedom Bell-Mcaffrey

Agency FE Yes Yes Yes Yes Yes Yes Yes Yes
Contractor FE Yes Yes Yes Yes Yes Yes Yes Yes
Task FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 491,846 491,846 491,846 491,846 445,101 445,101 445,101 445,101
R2 0.26 0.26 0.26 0.26 0.11 0.11 0.11 0.11

Note. This table reports the estimated treatment effect of network disruptions on delay days by considering alternative measures
of the standard errors (reported in parentheses). Significance levels: 1%∗∗∗, 5%∗∗, 10%∗.
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Appendix B: Measuring the economic costs of delay spillovers

The costs of a delay to a project can manifest in many ways: there can be direct, indirect, and opportunity
costs. For example, if a traffic jam delays our evening commute home, there are direct costs (cost of gas),
indirect costs (additional wear and tear on car) and opportunity costs (less time at home to spend with
family or to relax). In other words, delay costs ripple outward – starting with costs that are easy to attribute
to the delay and to estimate, and moving to indirect and opportunity costs that are harder, if not impossible,
to estimate or even to identify or attribute to the original delay.

This idea, that delay costs ripple outward in the manner described above, is recognized in studies that
attempt to estimate the economic significance of delays. For example, the Texas Dept of Transportation
(Beaty et al. 2016) developed a model to estimate the costs associated with delay of highway projects.

In our setting, in order to estimate the costs of delay spillovers, we first start by conceptualizing the
different categories of delay costs. Keogh and Evans (1992) provide a simple but useful categorization. Project
delay costs can be classified as leading to “private costs” and “social costs.” Private costs refer to the costs of
delays that are incurred by the organizations that are directly involved (e.g., the contractors, agencies, etc.);
these costs can be direct (e.g., additional labor costs) or indirect (e.g., overheads incurred while the project
is delayed). Social costs refer to the costs of delay that are externalized, i.e., borne by society at large. These
costs can include the impact on citizens (e.g., commuters when a road construction project is delayed), etc.
Beaty et al. (2016) point out, however, that in public projects, all costs are ultimately borne by the general
public.

There are some examples of studies that attempt to estimate social costs of a delay. Using a case study of
highway repair projects, Lewis and Bajari (2014) argue that “the daily social cost imposed by the construction
would be 175,000 hours. Valuing time at $10 an hour, this implies a social cost of $1.75 million per day.”

In our context, it might be impractical, if not impossible, to attempt to quantify the social costs of delays.
This is because of the wide variety of projects and users that are part of our data set. Nonetheless, we
acknowledge that these costs can be significant. Keogh and Evans (1992) also note that social costs are
extremely hard to estimate and that estimates of delay costs are often confined to the estimation of private
costs. We follow a similar approach here and restrict our estimation of costs to the direct and indirect cost
borne by the contractors. This estimate, of course, would be a lower bound on the true delay costs.

Measuring direct and indirect costs of project delays

A straightforward approach to estimating the direct costs of a delay is to simply look at the cost overrun
(i.e., the actual project cost – the initial estimated project cost). The benefit of this approach is its simplicity.
However, cost overruns may incorrectly estimate the direct costs, e.g., if some direct costs cannot be billed
to the project.

For projects where labor costs are the major component of direct costs of delay, estimating the additional
labor cost due to project delays provides a conservative estimate of delay costs.

Indirect costs are even more challenging to account for and estimate. This is because indirect costs are
often overheads that a contractor allocates to its projects. How would a delay affect the allocation and
recovery of the additional overhead costs that a contractor may incur?
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U.S. Federal Courts have accepted a formula called the Eichleay formula as a valid method to estimate
overhead costs that cannot be directly attributed to a particular project but are incurred due to the extended
duration of the project caused by the delay. Overhead costs typically include administration costs, utilities,
depreciation, taxes, insurance, etc., which are not directly billable to a specific project but are necessary
business costs. The Eichleay formula is calculated via a three-step procedure:

• Step 1: Total Project Billings ÷ Total Company Billings × Total Home-Office Overhead During Actual
Contract Period = Overhead Allocated to Project

• Step 2: Overhead Allocated to Project ÷ Actual Days of Project Performance (including delay) =
Rate of Overhead Allocated to Project Per Day

• Step 3: Rate of Overhead Allocated to Project Per Day × Number of Days Delayed = Amount of
Overhead Allocated to Project due to delay.

Using data to estimate the economic costs of delay spillover

We estimate the direct and indirect costs of a delay using three methods commonly used by the project
managers and the courts to assess the damages caused by a delay.
1. Eichleay formula: For the first estimate, we use the labor cost of delay to estimate the direct cost and
we estimate the indirect cost using the Eichleay formula.

The labor cost of delay (i.e., direct costs of delay) was estimated by retrieving the average hourly wage
in every industry from the Bureau of Labor Statistics, and the average overhead cost and company billings
from filing records. We, then, matched this with project records to estimate the cost of labor in the project’s
industry. We computed the labor cost for a project delay as follows:

Direct cost of labor = 8 × Hourly wage per worker × Days of delay × Employees per project

We obtain the overhead allocated to a project by re-writing the first two steps of Eichleay formula:

Daily overhead allocated to project = Total project cost
Actual project duration × Total overhead

Total company billings

Once the overhead allocated to a project is defined, the indirect costs are calculated as follows.

Indirect costs = Daily overhead allocated to project × Delay days

2. Modified Eichleay formula: For the second estimate, we again use the labor cost of delay to estimate
the direct cost and we estimate the indirect cost using a Modified Eichleay formula.

The modified Eichleay formula uses a slightly different formula for the estimating the overhead allocated
to a project. The formula is as follows:

Daily overhead allocated to project = Total project cost
Initial project duration × Total overhead

Total company billings

Note that the denominator in the modified Eichleay formula is the initial project duration and not the
actual project duration. Again, the indirect costs are calculated by multiplying the daily overhead allocated
to a project with delay days.
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3. CD3 formula: A third approach we use to estimate delay costs is called the “cost of delay divided by
duration” or “CD3”. This is a commonly used approach by contractors, and it does not require much data.
The CD3 approaches estimates the sum of direct and indirect costs as follows.

Direct Cost + Indirect cost = Total project cost
Initial project duration × Delay days

Once we have been able to estimate the economic costs of a project delay, we can quantify the economic
costs of a delay spillover. In order to do this, we first measure the size of spillovers per delay day. We then
multiply the per-day total cost by this magnitude. Put differently:

Economic costs of delay spillover = Cost of delay per day × Spillover magnitude

We adapt the above methods using our data. In particular, to estimate the direct cost of a delay, we
retrieved the average hourly wage in every industry from the Bureau of Labor Statistics, and proxy for the
average overhead cost and company billings using filing records from Compustat. We, then, matched this
with project records to estimate the cost of labor in the project’s industry. Note that this approach can only
provide a lower bound on the direct cost of delays as it does not account for some inputs. However, our
intent here is to illustrate a methodology which can be used to estimate delay costs, and a lower bound will
at least provide some idea about the economic impact of a delay.

Our estimates of spillover costs using the above three methods are shown in Table B.1. Further, Figure B.1
illustrates the spillover cost for select task types in our data.

Table B.1 Expected cost of delay spillover per period

Eichleay Formula Modified Eichleay Formula CD3

Direct costs Indirect costs Total Cost Direct costs Indirect costs Total Cost Total Cost
Treated projects $33,753.11 $9,461.42 $43,214.53 $33,753.11 $24,065.65 $57,818.76 $70,778.47
Control projects $30,327.72 $7,959.81 $38,287.53 $30,327.72 $20,344.41 $50,672.13 $60,671.65

Spillover cost $4,927 $7,146.63 $10,106.82
Note. This table shows the estimated cost of delay spillovers using three different methods: Eichleay formula, Modified Eichleay formula, and

CD3 approach.
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Figure B.1 Illustration of spillover costs by task type

Note. This figure illustrates the estimated cost of delay spillovers for select project tasks.
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Appendix C: Non-weather disruptions

The main analysis focused on weather disruptions, given that doing so allows us to obtain cleaner results. In
this section, we examine the impact of other types of disruptions in this analysis. Unlike weather-related dis-
ruptions, which can be readily identified, categorizing other disruptions is not as straightforward. Therefore,
we had to establish a taxonomy. Recall that we observe a text description wherein the agency officer describes
the event corresponding to a disruption. We examined these text descriptions, both manually and through
word-frequency searches, to discern patterns in the disruption events. From this exercise, we identified the
following frequently-occurring root causes.

1. Bureaucratic issues: Issues related to bureaucratic hurdles, paperwork and invoice issues, legal
requirements, or policy changes that affect the project. This includes changes in building codes, per-
mits, environmental regulations, or zoning restrictions that necessitate modifications to the project
plan.
Example: Modification to extend completion date to 30 June 2015 due to delays resolving regulatory
comments on Site 7 sampling plan.

2. Labor/personnel issues: Issues related to labor strikes, shortage of skilled workers, or a sudden
departure of key personnel that impacts the project’s progress.
Example: Add additional test fits, redesign, documentation, and construction management required to
execute the revised space plan design and additional services related to the original scope of work due
to labor dispute.

3. Worksite issues: Issues related to a malfunction or failure of machinery or equipment used in the
project. This includes, for example, crane malfunction, discovery of asbestos on construction site, a
generator failure, or a software glitch that affects project operations.
Example: Date change due to asbestos- and arsenic- related issues at the building.

4. Supply chain issues: Issues related to shipping problems, material stockouts, or quality issues with
the supplied materials.
Example: The purpose of this modification is to a grant time extension due to late delivery and unex-
pected modifications the crane’s runway due to the location of an electrical panel. A time extension
has been granted.

We next categorize the text descriptions from the modification records into the four types of disruptions
identified above. Given the size of our dataset, it is infeasible to tag all disruptions manually. Therefore, we
used string matching to do a raw categorization of the data using commonly appearing strings. For instance,
whenever we identified “delay due to labor,” or “staff” issues, we proceeded to categorize the disruption as
a labor disruption. Similarly, when we saw terms like “asbestos,” “electrical”, “code violation,” “machine,”
we proceeded to tag the disruption as a worksite problem. When we saw terms like “paperwork”, “permit”,
“administrative” issues, we classified it as a bureaucratic disruption.19

19 To further validate our findings, we also conducted a secondary test via an Amazon Mechanical Turk (MTurk)
task. Specifically, we asked Mturk participants to read a subsample of modification records and classify the reported
disruptions in them. Although the results from this analysis were qualitatively similar, we do not report them due to
the small sample size and potential for labeling inaccuracies.
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Table C.1 Diff-in-diff effect by disruption type

Bureaucratic Worksite Labor Supply chain
disruptions disruptions disruptions disruptions
I II III IV V VI VII VIII

Delay days 3.03∗∗∗ 3.74∗∗∗ 6.14∗∗∗ 6.51∗∗∗ -1.38 -1.26 6.77∗∗∗ 6.93∗∗∗

(1.15) (1.14) (1.29) (1.28) (6.89) (6.77) (1.45) (1.40)

Controls No Yes No Yes No Yes No Yes
Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 451,890 451,890 339,605 339,605 97,363 97,363 400,995 400,995
R2 0.26 0.28 0.37 0.38 0.55 0.56 0.31 0.33

Note. This table presents the estimated coefficients for diff-diff effect on delay days by the type of
disruption. Each specification includes agency, contractor, task, and county fixed effects, and includes or
excludes project level controls. The standard errors (reported in parentheses) are robust and clustered
at the project level. Significance levels: 10% (∗), 5% (∗∗), and 1% (∗∗∗)

We re-run our analysis by matching treatment and control projects using these new definitions of disrup-
tions, and performing a diff-in-diff regression that retrieves the treatment effect by root cause—Table C.1
shows the results.

We find evidence that bureaucratic, worksite, and supply chain disruptions spill over to delay other projects.
Labor disruptions, on the other hand, do not cause significant spillover effect. This finding is also consistent
with our analysis that shows contractors reallocate resources from machine-intensive tasks, as opposed to
labor intensive ones. While these results do provide some evidence that disruptions caused by non-weather
related issues also propagate in the project network, we caution against causal interpretation of these findings
due to potential for endogeneity, reporting biases, and omissions in the data (as previously discussed in
Section 3).
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Appendix D: Additional results and summary statistics

D.1. Which tasks are more prone to reallocation externalities?

The propensity to experience a weather shock and the ease of resource reallocation may depend on the task
being performed. This means that the effects studied in this paper could be highly contingent on the nature
of the work. But which types of tasks are more prone to experiencing disruption externalities? To investigate
this issue, our initial approach was to disaggregate the analysis and determine how the treatment effect
varied as a function of the task category. That is, we obtained a treatment effect for every task category,
using the 3-digit task code.

Figure D.1 displays the treatment effect by task type via a tree map, while Table D. 1 presents the five
types of tasks with the largest treatment effect and the five types of tasks with the most negative treatment
effect. This analysis shows allows us to see that the treatment effect is positive across most task categories,
meaning that the effect is fairly generalized across the network instead of being secluded to a specific subset
of tasks. From this disaggregated analysis, however, we cannot identify a clear pattern regarding which types
of tasks are more prone to delays.

Figure D.1 Treatment effect by task type of the disrupted project

Note. This figure displays how the average treatment effect varies by task category of the disrupted project.

D.2. Contractor size and reallocation externalities

Our results show that localized disruptions at one project propagate to delay other projects that are connected
in the project network due to self-interested resource reallocation by project participants. This prompts
the question of how operational concepts such as slack time or safety capacity affect these reallocation
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Table D. 1 Diff-in-Diff estimates by task type: top-5 and bottom-5 task codes

Top-5 (Three-digit task codes)
Code Task category Treatment effect
C12 Architecture & Engineering – Non-building structures 88.44
254 Vehicular Equipment Components – Furniture and accessories 84.73
C1C Architecture & Engineering – Schools 81.34
C1L Architecture & Engineering – Highways, roads, streets, bridges, and railways 78.65
Z19 Maintenance and Repair of Buildings – Miscellaneous buildings 77.56

Bottom-5 (Three-digit task codes)
Code Task category Treatment effect
C1F Architecture & Engineering – Recreational buildings -26.05
283 Engines & Turbines – Water turbines and water wheels -22.64
Z21 Maintenance and Repair of Non-buildings – Dams -16.70
155 Aerospace Craft And Structural Components – Space vehicles -11.59
230 Motor Vehicles, Cycles, Trailers – Ground effect vehicles -11.31

Table D. 2 Diff-in-diff estimates as a function of contractor size

Treatment effect (in days)
I II III IV V VI

Ln(1+Annual Revenue) -1.32∗∗∗ -1.43∗∗∗ -1.30∗∗∗

(0.16) (0.18) (0.18)
Ln(1+Employees) -2.29∗∗∗ -2.58∗∗∗ -2.65∗∗∗

(0.37) (0.38) (0.40)
Controls Yes Yes Yes Yes Yes Yes
Task FE Yes Yes Yes Yes Yes Yes
Industry FE No Yes Yes No Yes Yes
County FE No No Yes No No Yes
Num treated 25,875 25,870 25,870 25,875 25,870 25,870
R2 0.12 0.15 0.18 0.12 0.15 0.18

Note. This table presents the estimated coefficients for the treatment effect as a function of the
contractor size. Each specification controls for the project’s initial budget and duration, and number
of offers received; and includes or excludes fixed effects. The standard errors (reported in parentheses)
are robust and clustered at the project level. Significance levels: 10% (∗), 5% (∗∗), and 1% (∗∗∗)

externalities. One could conjecture, for example, that larger contractors have a bigger resource pool and
can invest in operational buffers. Therefore, projects operated by large contractors may be able to absorb
the effect of a localised disruption without negative reallocation externalities. Since we do not observe the
resources that contractors allocate to a project, we cannot directly observe the slack time or the level of
safety capacity available. However, we can proxy for operational buffers by using two measures of contractor
size in our data—the annual revenue and the number of employees. We examine how the treatment effect
varies with respect to these two variables. Table D. 2 shows that, indeed, the reallocation externalities reduce
as the size of the contractor increases.

D.3. Summary statistics

In this section, we present the summary statistics for the projects and weather data used in our analyses
(see Figure D.2 and Tables D. 3 and D. 4), as well as on the partitioning process (in Table D. 5).
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Figure D.2 Map of weather events by type

Note. Number of reported weather-related events, by county and type. Darker shades represent more events.

Table D. 3 Summary statistics: Project characteristics (drawn from the project records dataset) before matching

Variable Type Unit Mean St Dev
Project budget Continuous Dollars (100,000s) 5.27 11.18
Project duration Continuous Days 286.54 272.68
Number of bids Count Bids 3.45 3.71
Number of employees Count Employee (100s) 147.77 355.48
Annual revenue Continuous Dollars (in millions) 5822.71 15881.17
Competitively awarded project Categorical {0,1} 0.76 0.43
Cost-plus contract Categorical {0,1} 0.08 0.26
Fixed price contract Categorical {0,1} 0.88 0.33
Labor hours contract Categorical {0,1} 0.02 0.15
Time and Materials contract Categorical {0,1} 0.02 0.15
Number of projects 2,484,188
Number of contractors 124,026
Number of agency offices 3,559
Number of tasks 1,188
Number of counties 2,970
Number of agencies 65
Number of sub-agencies 173
Avg. delay caused by a weather disruption 48.71 days
Sample Timespan Jan 01, 2011 to Sep 30, 2015
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Table D. 4 Summary statistics: Weather records

Variable Type Unit Mean St Dev
Number of deaths Count Person 0.010 0.330
Number of injuries Count Person 0.050 2.930
Property damage Continuous Dollars (in millions) 0.499 44.792
Event duration Continuous Days 1.840 6.640
Wildfire Categorical {0,1} 0.006 0.080
Flash flood Categorical {0,1} 0.060 0.240
Tornado Categorical {0,1} 0.020 0.140
Ice storm Categorical {0,1} 0.004 0.070
Drought Categorical {0,1} 0.060 0.230
Number of severe weather events (damage ≥$500,000) 5,808
Time-span Jan 1, 2011 to Dec 31, 2018

Table D. 5 Summary statistics: Storm-hit project’s network connections

Number of Connections Percentage of projects
0 0.57
1 0.12
2 0.06
3 0.04
4 0.03
5 0.03
6 0.02
7 0.02
8 0.02
9 0.01

≥10 0.14
Note. This table shows the number of network connections that a given storm-

hit project concurrently had at a given time (not the sum of connections over the
entire project duration).

Table D. 6 Partitions in Step 1
Partition size Number of partitions

1 272,403
2 58,876
3 26,327
4 14,873
5 9,879
6 6,875
7 5,026
8 3,924
9 3,116

≥10 27,788

Table D. 7 Period specific partitions in Step 3

Partition size Number of partitions % Treated
1 986,666 19.85
2 175,822 21.17
3 70,199 21.90
4 37,204 22.40
5 22,758 22.86
6 15,527 22.77
7 10,848 22.85
8 8,197 23.07
9 6,194 24.47

≥ 10 41,489 29.48
Table D. 8 Identifiable partitions in Step 4

Partition size Number of partitions
1 0
2 17,644
3 10,581
4 7,010
5 4,899
6 3,703
7 2,862
8 2,250
9 1,910

10 16,424
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